Ejemplo n.º 1
0
    def paste(self):
        if self.copy_mask is None:
            self.show_msg('Please select a region to copy first.')
            return

        copy_to = renormalize.from_url(self.editing_canvas.mask,
                                       target='pt',
                                       size=(256, 256))[0]
        area = renormalize.from_url(self.copy_mask,
                                    target='pt',
                                    size=(256, 256))[0]
        t, l, b, r = positive_bounding_box(area)
        area = area[t:b, l:r]

        target_rgb = self.copy_canvas.rgb
        source_rgb = renormalize.from_url(self.editing_canvas.image).permute(
            1, 2, 0)
        rendered_img = paste_clip_at_center(source_rgb, target_rgb,
                                            centered_location(copy_to),
                                            area)[0].permute(2, 0, 1)

        self.editing_canvas.mask = ''
        self.editing_canvas.image = renormalize.as_url(rendered_img)
        self.positive_masks[self.editing_canvas.index] += copy_to
        self.real_images_array[
            self.editing_canvas.index].src = renormalize.as_url(
                F.interpolate(rendered_img.unsqueeze(dim=0),
                              size=(self.size, self.size)).squeeze())
        self.from_editing_canvas()
Ejemplo n.º 2
0
 def load(self):
     if self.editname_textbox.value == '':
         self.show_msg('Please enter a file name to load')
         return
     savedir = os.path.join(self.savedir, self.editname_textbox.value)
     if not os.path.exists(savedir):
         self.show_msg(f'{savedir} does not exist')
         return
     with open(os.path.join(savedir, 'edit_type.txt')) as f:
         self.edit_type = f.readlines()[0].strip()
     trn = transforms.ToTensor()
     for i in range(self.num_canvases):
         if os.path.exists(os.path.join(savedir, f'{i}_rgb.png')):
             image = trn(Image.open(os.path.join(savedir,
                                                 f'{i}_rgb.png'))) * 2 - 1
             self.real_canvas_array[i].image = renormalize.as_url(image)
             self.real_canvas_array[i].resized_image = renormalize.as_url(
                 F.interpolate(image.unsqueeze(dim=0),
                               size=(self.size, self.size)).squeeze())
             self.real_images_array[i].src = self.real_canvas_array[
                 i].resized_image
         if os.path.exists(os.path.join(savedir, f'{i}_pos.pt')):
             self.positive_masks[i] = torch.load(
                 os.path.join(savedir, f'{i}_pos.pt'))
         if os.path.exists(os.path.join(savedir, f'{i}_neg.pt')):
             self.real_canvas_array[i].negative_mask = torch.load(
                 os.path.join(savedir, f'{i}_neg.pt'))
Ejemplo n.º 3
0
 def display_addition_instance(self):
     for i in range(12):
         self.addition_instances_array[i].src = renormalize.as_url(
             self.trn(
                 Image.open(
                     os.path.join(self.parentdir, 'instances',
                                  '{:03d}.png'.format(i)))) * 2 - 1)
         self.addition_instances_array[i].index = i
Ejemplo n.º 4
0
 def update_cb(i, rgb):
     if update:
         img = torch.tensor(rgb).permute(2, 0, 1) * 2 - 1
         resized = F.interpolate(img.unsqueeze(dim=0),
                                 size=(self.size,
                                       self.size)).squeeze(dim=0)
         self.real_images_array[i].src = renormalize.as_url(resized)
     else:
         pass
Ejemplo n.º 5
0
 def render_editing_canvas(self, style):
     index = self.editing_canvas.index
     pose = self.poses[index].unsqueeze(dim=0)
     self.editing_canvas.image = renormalize.as_url(
         self.render(pose,
                     style,
                     verbose=False,
                     inds=[index],
                     use_cache=self.edit_type == 'color_from',
                     update_cache=False)[0])
Ejemplo n.º 6
0
 def target_transfer(self, instancenum, index):
     self.copy_canvas.mask = ''
     self.copy_canvas.index = index
     self.copy_canvas.instance_style = self.all_instance_styles[
         instancenum].unsqueeze(dim=0)
     rgb = self.render(self.poses[index].unsqueeze(dim=0),
                       self.copy_canvas.instance_style.squeeze(dim=0),
                       verbose=False,
                       use_cache=False)
     self.copy_canvas.image = renormalize.as_url(
         F.interpolate(rgb, size=(self.size, self.size))[0])
Ejemplo n.º 7
0
    def update_canvas(self, images, disps=None):
        for i, image in enumerate(images):
            resized_rgb = F.interpolate(image.unsqueeze(dim=0),
                                        size=(self.size,
                                              self.size)).squeeze(dim=0)
            self.real_images_array[i].src = renormalize.as_url(resized_rgb)
            self.real_canvas_array[i].image = renormalize.as_url(image)
            self.real_canvas_array[i].resized_image = renormalize.as_url(
                resized_rgb)
            if disps is not None:
                disp_img = torch.from_numpy(to8b(to_disp_img(
                    disps[i]))).unsqueeze(dim=0) / 255.
                resized_disp = F.interpolate(disp_img.unsqueeze(dim=0),
                                             size=(self.size,
                                                   self.size)).squeeze(dim=0)
                self.real_canvas_array[i].resized_disp = renormalize.as_url(
                    resized_disp)
                self.real_canvas_array[i].disp = renormalize.as_url(disp_img)

        if self.editing_canvas.index >= 0:
            self.editing_canvas.image = self.real_canvas_array[
                self.editing_canvas.index].image
Ejemplo n.º 8
0
 def change_mask(self, ev):
     if self.mask_type == 'positive' or self.mask_type == 'sigma':
         i = self.editing_canvas.index
         orig_img = renormalize.from_url(self.editing_canvas.image)
         mask = renormalize.from_url(self.editing_canvas.mask) / 2 + 0.5
         mask = F.interpolate(mask.unsqueeze(dim=0),
                              size=(self.size * 2,
                                    self.size * 2)).squeeze()
         if self.mask_type == 'positive':
             self.edit_type = 'color'
             if self.color is None:
                 self.show_msg('Please select a color.')
                 if ev.target.image != '':
                     self.real_canvas_array[
                         ev.target.index].negative_mask = ''
                 return
             edited_img = orig_img * (1 - mask) + mask * self.color
         elif self.mask_type == 'sigma':
             self.edit_type = 'removal'
             edited_img = orig_img * (1 - mask) + mask * torch.ones(
                 (3, self.size * 2, self.size * 2)).to(mask.device)
         self.positive_masks[i] += mask
         self.real_canvas_array[i].image = renormalize.as_url(edited_img)
         self.editing_canvas.image = renormalize.as_url(edited_img)
         self.real_images_array[i].src = renormalize.as_url(
             F.interpolate(edited_img.unsqueeze(dim=0),
                           size=(self.size, self.size)).squeeze())
         self.editing_canvas.mask = ''
     elif self.mask_type == 'negative':
         i = ev.target.index
         self.real_canvas_array[i].negative_mask = self.editing_canvas.mask
     elif self.copy_mask is not None:
         self.paste()
     else:
         if ev.target.image != '':
             self.real_canvas_array[ev.target.index].negative_mask = ''
Ejemplo n.º 9
0
    def __init__(self,
                 instance,
                 config,
                 use_cached=True,
                 expname=None,
                 edit_type=None,
                 num_canvases=9,
                 shape_params='fusion_shape_branch',
                 color_params='color_branch',
                 randneg=8192,
                 device='cuda:0'):
        super().__init__(style=dict(
            border="3px solid gray", padding="8px", display="inline-block"))
        torch.set_default_tensor_type('torch.cuda.FloatTensor' if device ==
                                      'cuda:0' else 'cpu')
        self.edit_type = edit_type
        self.instance = instance
        self.num_canvases = num_canvases
        self.shape_params = shape_params
        self.color_params = color_params
        self.size = IMG_SIZE
        self.randneg = randneg
        self.device = device
        self.msg_out = labwidget.Div()
        self.editing_canvas = paintwidget.PaintWidget(image='',
                                                      width=self.size * 3,
                                                      height=self.size * 3).on(
                                                          'mask',
                                                          self.change_mask)
        self.editing_canvas.index = -1
        self.copy_canvas = paintwidget.PaintWidget(image='',
                                                   width=self.size * 2,
                                                   height=self.size * 2).on(
                                                       'mask', self.copy)
        self.copy_mask = None
        inline = dict(display='inline', border="2px solid gray")

        self.toggle_rgbs_disps_btn = labwidget.Button(
            'show depth', style=inline).on('click', self.toggle_rgb_disps)
        self.positive_mask_btn = labwidget.Button(self.pad('edit color'),
                                                  style=inline).on(
                                                      'click',
                                                      self.positive_mask)
        self.addition_mask_btn = labwidget.Button(self.pad('add shape'),
                                                  style=inline).on(
                                                      'click', self.add)
        self.sigma_mask_btn = labwidget.Button(self.pad('remove shape'),
                                               style=inline).on(
                                                   'click', self.sigma_mask)
        self.color_from_btn = labwidget.Button(self.pad('transfer color'),
                                               style=inline).on(
                                                   'click', self.color_from)
        self.shape_from_btn = labwidget.Button(self.pad('transfer shape'),
                                               style=inline).on(
                                                   'click', self.shape_from)
        self.execute_btn = labwidget.Button(self.pad('execute'),
                                            style=inline).on(
                                                'click', self.execute_edit)
        self.brushsize_textbox = labwidget.Textbox(5,
                                                   desc='brushsize: ',
                                                   size=3).on(
                                                       'value',
                                                       self.change_brushsize)

        self.target = None
        self.use_color_cache = True

        self.color_style = dict(display='inline', border="2px solid white")
        trn = transforms.Compose(
            [transforms.Resize(32),
             transforms.ToTensor()])
        bg_img = trn(Image.open('bg.png').convert('RGB'))
        bg_img = renormalize.as_url(bg_img * 2 - 1)
        self.color_pallete = [
            labwidget.Image(src=bg_img,
                            style=self.color_style).on('click', self.set_color)
        ]
        self.color_pallete[-1].index = 0
        self.color_pallete[-1].color_type = 'bg'

        for color in mean_colors.colors.values():
            image = torch.zeros(3, 32, 32)
            image[0, :, :] = color[0]
            image[1, :, :] = color[1]
            image[2, :, :] = color[2]
            image = image / 255. * 2 - 1
            self.color_pallete.append(
                labwidget.Image(src=renormalize.as_url(image),
                                style=self.color_style).on(
                                    'click', self.set_color))
            self.color_pallete[-1].index = len(self.color_pallete) - 1
            self.color_pallete[-1].color_type = 'color'
            # TODO: Highlight the white box with black for clarity

        self.color = None
        self.mask_type = None
        self.real_canvas_array = []
        self.real_images_array = []
        self.positive_masks = []

        train, test, optimizer, styles = load_model(instance,
                                                    config,
                                                    expname=expname)
        poses, hwfs, cache, args = load_dataset(instance,
                                                config,
                                                num_canvases=num_canvases,
                                                N_instances=styles.shape[0],
                                                expname=expname,
                                                use_cached=use_cached)
        self.parentdir = load_config(config).expname
        self.expname = expname if expname else self.parentdir
        self.savedir = os.path.join(self.expname, str(instance))
        os.makedirs(self.savedir, exist_ok=True)
        self.poses = poses.to(device)
        self.cache = cache
        self.chunk = args.chunk
        self.near = args.blender_near
        self.far = args.blender_far
        self.nfs = [[self.near, self.far]] * self.poses.shape[0]
        self.hwfs = hwfs.to(device)
        self.old_fine_network = dict(
            copy.deepcopy(test['network_fine']).named_parameters())
        self.train_kwargs = train
        self.test_kwargs = test
        self.optimizer = None
        self.all_instance_styles = styles
        self.instance_style = styles[instance].unsqueeze(dim=0).to(device)

        if cache is not None:
            self.weights = cache['weights']
            self.alphas = cache['alphas']
            self.features = cache['features']
        else:
            self.weights = None
            self.alphas = None
            self.features = None

        self.trn = transforms.Compose(
            [transforms.Resize(128),
             transforms.ToTensor()])
        self.transfer_instances_array = [
            labwidget.Image(src='').on('click', self.change_target)
            for _ in range(12)
        ]
        self.addition_instances_array = [
            labwidget.Image(src='').on('click', self.change_target)
            for _ in range(12)
        ]
        images, disps = self.render(self.poses,
                                    self.instance_style,
                                    verbose=False,
                                    get_disps=True)
        for i, image in enumerate(images):
            resized = F.interpolate(image.unsqueeze(dim=0),
                                    size=(self.size, self.size)).squeeze(dim=0)
            disp_img = torch.from_numpy(to8b(to_disp_img(
                disps[i]))).unsqueeze(dim=0) / 255.
            resized_disp = F.interpolate(disp_img.unsqueeze(dim=0),
                                         size=(self.size,
                                               self.size)).squeeze(dim=0)
            self.real_images_array.append(
                labwidget.Image(src=renormalize.as_url(resized)).on(
                    'click', self.set_editing_canvas))
            self.real_images_array[-1].index = i
            self.real_canvas_array.append(
                paintwidget.PaintWidget(image=renormalize.as_url(image),
                                        width=self.size * 3,
                                        height=self.size * 3).on(
                                            'mask', self.change_mask))
            self.real_canvas_array[-1].index = i
            self.real_canvas_array[-1].negative_mask = ''
            self.real_canvas_array[-1].resized_image = renormalize.as_url(
                resized)
            self.real_canvas_array[-1].resized_disp = renormalize.as_url(
                resized_disp)
            self.real_canvas_array[-1].disp = renormalize.as_url(disp_img)
            self.real_canvas_array[-1].orig = renormalize.as_url(image)
            self.positive_masks.append(torch.zeros(image.shape).cpu())
        self.show_rgbs = True

        self.change_brushsize()
        self.editname_textbox = labwidget.Datalist(choices=self.saved_names(),
                                                   style=inline)
        self.save_btn = labwidget.Button('save',
                                         style=inline).on('click', self.save)
        self.load_btn = labwidget.Button('load',
                                         style=inline).on('click', self.load)