Ejemplo n.º 1
0
def test_affine_transform(plot=False):
    np.random.seed(1)
    corrs = [0, 0.6, 0.95, 0.999]
    for corr in corrs:
        for scaleratio in [1]:  #, 0.001]:
            covmatrix = np.array([[1., corr], [corr, 1.]])
            # should draw uniformly sampled points
            points = genpoints_following_cov(covmatrix, size=400)
            print('settings: corr:', corr, 'scaleratio:', scaleratio,
                  'covmatrix:', covmatrix.flatten(), points.shape)
            points[:, 0] = points[:, 0] * 0.01 * scaleratio + 0.5
            points[:, 1] = points[:, 1] * 0.01 + 0.5

            layer = AffineLayer()
            layer.optimize(points, points)
            points3 = layer.untransform(
                genpoints_following_cov(np.diag([1, 1]), size=400))
            #print('cov:', layer.cov, 'covmatrix:', covmatrix, 'ratio:', layer.cov / covmatrix)
            tpoints = layer.transform(points)

            assert tpoints.shape == points.shape, (tpoints.shape, points.shape)
            points2 = layer.untransform(tpoints)
            assert tpoints.shape == points2.shape, (tpoints.shape,
                                                    points2.shape)

            if plot and scaleratio == 1:
                plt.figure(figsize=(9, 4))
                plt.subplot(1, 2, 1)
                plt.scatter(points[:, 0], points[:, 1])
                plt.scatter(points2[:, 0], points2[:, 1], marker='x')
                plt.scatter(points3[:, 0], points3[:, 1], marker='+')
                plt.subplot(1, 2, 2)
                plt.scatter(tpoints[:, 0], tpoints[:, 1])
                lo, hi = plt.xlim()
                lo2, hi2 = plt.ylim()
                lo, hi = min(lo, lo2), max(hi, hi2)
                plt.xlim(lo, hi)
                plt.ylim(lo, hi)
                plt.savefig("testtransform_affine_corr%s_scale%s.pdf" %
                            (corr, scaleratio),
                            bbox_inches='tight')
                plt.close()
            assert (points2 == points).all(), (points, tpoints, points2)

            # transform a single point
            points = points[0]
            tpoints = layer.transform(points)
            assert tpoints.shape == points.shape, (tpoints.shape, points.shape)
            points2 = layer.untransform(tpoints)
            assert tpoints.shape == points2.shape, (tpoints.shape,
                                                    points2.shape)

            assert (points2 == points).all(), (points, tpoints, points2)
Ejemplo n.º 2
0
def test_region_mean_distances():
    np.random.seed(1)
    points = np.random.uniform(0.4, 0.6, size=(10000, 2))
    #points[:,1] *= 0.5
    mask = np.abs((points[:, 0] - 0.5)**2 +
                  (points[:, 1] - 0.5)**2 - 0.08**2) < 0.02**2
    print('circle:', mask.sum())
    points = points[mask]
    mask = points[:, 0] < 0.5
    print('half-circle:', mask.sum())
    points = points[mask]

    transformLayer = AffineLayer(wrapped_dims=[])
    transformLayer.optimize(points, points)
    region = MLFriends(points, transformLayer)
    region.maxradiussq, region.enlarge = region.compute_enlargement(
        nbootstraps=30)
    print("enlargement factor:", region.enlarge, 1 / region.enlarge)
    region.create_ellipsoid()
    meandist = region.compute_mean_pair_distance()

    t = transformLayer.transform(region.u)
    d = 0
    N = 0
    for i in range(len(t)):
        for j in range(i):
            d += ((t[i, :] - t[j, :])**2).sum()**0.5
            #print(i, j, t[i,:], t[j,:], ((t[i,:] - t[j,:])**2).sum())
            N += 1

    print((meandist, d, N, t))
    assert np.isclose(meandist, d / N), (meandist, d, N)