from umbmid import get_proj_path, verify_path, get_script_logger from umbmid.loadsave import save_pickle, save_mat, load_pickle from umbmid.content import get_class_labels from umbmid.ai.traintestsplit import split_to_train_test ############################################################################### # Define the directory where the clean dataset is located __DATA_DIR = os.path.join(get_proj_path(), 'datasets/gen-one/clean/') ############################################################################### # Define the output directory where the train/test set files will # be saved __OUTPUT_DIR = os.path.join(get_proj_path(), 'datasets/gen-one/clean/') verify_path(__OUTPUT_DIR) ############################################################################### if __name__ == '__main__': logger = get_script_logger(__file__) # Get logger # Load the dataset to be split and its metadata fd_data = load_pickle(os.path.join(__DATA_DIR, 'fd_data_s11_emp.pickle')) metadata = load_pickle(os.path.join(__DATA_DIR, 'md_list_s11_emp.pickle')) labels = get_class_labels(metadata) # Get the class labels # Split into the train and test sets, and return the random seed # NOTE: The random seed that was used to make the train/test sets # that produced the results presented in the EuCAP2020 paper
def make_clean_files(gen='one', cal_type='emp', sparams='s11', logger=null_logger): """Makes and saves the clean .mat and .pickle files Parameters ---------- gen : str The generation of data to be used, must be in ['one', 'two'] cal_type : str The type of calibration to be performed, must be in ['emp', 'adi' sparams : str The type of sparam to save, must be in ['s11', 's21'] logger : A logger for logging progress """ assert gen in ['one', 'two', 'three'], \ "Error: gen must be in ['one', 'two', 'three']" assert sparams in ['s11', 's21'], \ "Error: sparams must be in ['s11', 's21']" # Load the frequency-domain dataset logger.info('\tImporting FD data and metadata...') fd_data, fd_md = import_fd_cal_dataset(cal_type=cal_type, prune=True, gen=gen, sparams=sparams, logger=logger) logger.info('\tImport complete. Saving to .pickle and .mat files...') # Define an output dir for this generation of dataset this_output_dir = os.path.join(__OUTPUT_DIR, 'gen-%s/clean/' % gen) verify_path(this_output_dir) # Verify that this dir exists logger.info('Num data samples:\t\t%s' % np.size(fd_data, axis=0)) logger.info('Length of metadata:\t\t%s' % len(fd_md)) # Save the frequency-domain data and metadata save_pickle( fd_md, os.path.join(this_output_dir, 'md_list_%s_%s.pickle' % (sparams, cal_type))) save_pickle( fd_data, os.path.join(this_output_dir, 'fd_data_%s_%s.pickle' % (sparams, cal_type))) save_mat( fd_data, 'fd_data_%s' % sparams, os.path.join(this_output_dir, 'fd_data_%s_%s.mat' % (sparams, cal_type))) save_mat( fd_md, 'md_%s' % sparams, os.path.join(this_output_dir, 'md_list_%s_%s.mat' % (sparams, cal_type))) logger.info('\tComplete saving clean data files.')
University of Manitoba October 21st, 2019 """ import os import numpy as np from umbmid import get_proj_path, verify_path, get_script_logger from umbmid.loadsave import save_pickle, save_mat from umbmid.build import (import_fd_dataset, import_metadata, import_metadata_df) ############################################################################### __OUTPUT_DIR = os.path.join(get_proj_path(), 'datasets/') verify_path(__OUTPUT_DIR) __DATA_DIR = os.path.join(get_proj_path(), 'datasets/') ############################################################################### # The possible sparams for each generation of dataset possible_sparams = { 'one': ['s11'], 'two': ['s11', 's21'], } ############################################################################### if __name__ == '__main__':
University of Manitoba October 21st, 2019 """ import os import numpy as np from umbmid import get_proj_path, verify_path, get_script_logger from umbmid.loadsave import save_pickle, save_mat from umbmid.build import (import_fd_dataset, import_metadata, import_metadata_df) ############################################################################### __OUTPUT_DIR = os.path.join(get_proj_path(), 'datasets/') verify_path(__OUTPUT_DIR) __DATA_DIR = os.path.join(get_proj_path(), 'datasets/') ############################################################################### # The possible sparams for each generation of dataset possible_sparams = { 'one': ['s11'], 'two': ['s11', 's21'], 'three': ['s11', 's21'], } ############################################################################### if __name__ == '__main__':