Ejemplo n.º 1
0
def setup_mock_data():  # pragma: no cover
    data = un.Data()
    data_types = [
        "evaluations", "time", "mean", "variance", "percentile_5",
        "percentile_95", "sobol_first", "sobol_first_average", "sobol_total",
        "sobol_total_average"
    ]

    data.add_features(["feature1d", "TestingModel1d"])

    for data_type in data_types:
        data["feature1d"][data_type] = np.array([1., 2.])
        data["TestingModel1d"][data_type] = np.array([3., 4.])

    data["feature1d"]["labels"] = ["xlabel", "ylabel"]
    data["TestingModel1d"]["labels"] = ["xlabel", "ylabel"]

    data.uncertain_parameters = ["a", "b"]
    data.model_name = "TestingModel1d"
    data.method = "mock"
    data.seed = 10
    data.incomplete = ["a", "b"]
    data.error = ["feature1d"]

    return data
Ejemplo n.º 2
0
def generate_data_data_irregular():  # pragma: no cover
    data = un.Data()
    data_types = [
        "evaluations", "time", "mean", "variance", "percentile_5",
        "percentile_95", "sobol_first", "sobol_first_average", "sobol_total",
        "sobol_total_average"
    ]

    data.add_features(["feature1d", "TestingModel1d"])

    for data_type in data_types:
        data["feature1d"][data_type] = [1., 2.]
        data["TestingModel1d"][data_type] = [3., 4.]

    data["TestingModel1d"].evaluations = [[1, 2], [np.nan], [1, [2, 3], 3],
                                          [1], 3, [3, 4, 5], [1, 2], [],
                                          [3, 4, 5], [], [3, 4, 5]]
    data["TestingModel1d"].time = [[1, 2], [np.nan], [1, [2, 3], 3], [1], 3,
                                   [3, 4, 5], [1, 2], [], [3, 4, 5], [],
                                   [3, 4, 5]]

    data["feature1d"]["labels"] = ["xlabel", "ylabel"]
    data["TestingModel1d"]["labels"] = ["xlabel", "ylabel"]

    data.uncertain_parameters = ["a", "b"]
    data.model_name = "TestingModel1d"
    data.method = "mock"
    data.seed = 10
    data.incomplete = ["a", "b"]
    data.error = ["feature1d"]
    data.model_ignore = True

    data.save(os.path.join(test_data_dir, "test_save_mock_irregular"))
 def save_analysis_data(ucdata_path,**kwargs):
 
     uc_data =  un.Data(ucdata_path)
     model_name = uc_data.model_name
     features = list(uc_data.keys())
     features.remove(model_name)
     sens_datalist = []
     
     filepath = kwargs.pop('filepath',None)
     
     uc_params = uc_data.uncertain_parameters
     for i,param in enumerate(uc_params):
         for feature in features:
             sens_datadict = {}
             sens_datadict['feature'] = feature
             sens_datadict['sobol_index'] = uc_data[feature].sobol_first_average[i]
             sens_datadict['param_name'] = param
             for key,val in kwargs.items():
                 sens_datadict.update({key:val})
             
             sens_datalist.append(sens_datadict.copy())
     
     sens_datadf = pd.DataFrame(sens_datalist)
     
     if filepath:
         utility.create_filepath(filepath)
         sens_datadf.to_csv(filepath, index=False)
     
     return sens_datadf
Ejemplo n.º 4
0
def generate_data_data():  # pragma: no cover
    data = un.Data()
    data_types = ["evaluations", "time", "mean", "variance", "percentile_5", "percentile_95",
                  "sobol_first", "sobol_first_sum",
                  "sobol_total", "sobol_total_sum"]

    data.add_features(["feature1d", "TestingModel1d"])

    for data_type in data_types:
        data["feature1d"][data_type] = [1., 2.]
        data["TestingModel1d"][data_type] = [3., 4.]

    data["feature1d"]["labels"] = ["xlabel", "ylabel"]
    data["TestingModel1d"]["labels"] = ["xlabel", "ylabel"]

    data.uncertain_parameters = ["a", "b"]
    data.model_name = "TestingModel1d"
    data.method = "mock"
    data.seed = 10
    data.incomplete = ["a", "b"]

    data.save(os.path.join(test_data_dir, "test_save_mock"))
Ejemplo n.º 5
0
    #      end ='1-1-2024', freq ='D', name= "When")
    # df_out = pd.DataFrame(columns=locations,index=index)

    fig, ax = plt.subplots(len(locations), 1, sharex='col')

    for i, location in enumerate(locations):
        SITE, FOLDER = config(location)
        icestupa = Icestupa(location)
        icestupa.read_output()
        icestupa.self_attributes()

        variance = []
        mean = []
        evaluations = []

        data = un.Data()
        # filename1 = FOLDER['sim']+ "SE_full.h5"
        filename1 = FOLDER['sim'] + "full.h5"
        filename2 = FOLDER['sim'] + "fountain.h5"
        # filename1 = FOLDER['sim']+ "efficiency.h5"
        # print(data)

        if location == 'schwarzsee19':
            SITE["start_date"] += pd.offsets.DateOffset(year=2023)
            SITE["end_date"] += pd.offsets.DateOffset(year=2023)
        if location == 'guttannen20':
            SITE["start_date"] += pd.offsets.DateOffset(year=2023)
            SITE["end_date"] += pd.offsets.DateOffset(year=2023)
        if location == 'guttannen21':
            SITE["start_date"] += pd.offsets.DateOffset(year=2022)
            SITE["end_date"] += pd.offsets.DateOffset(year=2023)
Ejemplo n.º 6
0
def main():
    
    # Read sensitivity analysis config file
    sens_config_file = sys.argv[-1]
    sens_config_dict = utility.load_json(sens_config_file)
    cell_id = sens_config_dict['Cell_id']
    cpu_count = sens_config_dict['cpu_count'] if 'cpu_count'\
            in sens_config_dict.keys() else mp.cpu_count()
    perisomatic_sa = sens_config_dict.get('run_peri_analysis',False)
    
    # Parameters to vary (All-active) 
    select_aa_param_path = sens_config_dict['select_aa_param_path'] # knobs
    
    # Parameters to vary (Perisomatic) 
    if perisomatic_sa:
        select_peri_param_path = sens_config_dict['select_peri_param_path'] # knobs
    
    select_feature_path = sens_config_dict['select_feature_path'] # knobs
    param_mod_range = sens_config_dict.get('param_mod_range',.1) # knobs
    mechanism_path = sens_config_dict['mechanism']
    
    # config files with all the paths for Bluepyopt sim    
    lr = lims.LimsReader()
    morph_path = lr.get_swc_path_from_lims(int(cell_id))
    
    model_base_path='/allen/aibs/mat/ateam_shared/' \
                         'Mouse_Model_Fit_Metrics/{}'.format(cell_id)
                         
    opt_config_file = os.path.join(model_base_path,'config_file.json')
    if not os.path.exists(opt_config_file):
        opt_config = {
                "morphology": "",
                "parameters": "config/{}/parameters.json".format(cell_id),
                "mechanism": "config/{}/mechanism.json".format(cell_id),
                "protocols": "config/{}/protocols.json".format(cell_id),
                "all_protocols": "config/{}/all_protocols.json".format(cell_id),
                "features": "config/{}/features.json".format(cell_id),
                "peri_parameters": "config/{}/peri_parameters.json".format(cell_id),
                "peri_mechanism": "config/{}/peri_mechanism.json".format(cell_id)
                }
        opt_config_file = os.path.join(os.getcwd(),'config_file.json')
        utility.save_json(opt_config_file,opt_config)
    
    # optimized parameters around which select parameters are varied
    optim_param_path_aa = '/allen/aibs/mat/ateam_shared/Mouse_Model_Fit_Metrics/'\
    '{cell_id}/fitted_params/optim_param_unformatted_{cell_id}.json'.\
                    format(cell_id = cell_id)
    if not os.path.exists(optim_param_path_aa):
        optim_param_path_aa = '/allen/aibs/mat/ateam_shared/Mouse_Model_Fit_Metrics/'\
            '{cell_id}/fitted_params/optim_param_{cell_id}_bpopt.json'.\
                    format(cell_id = cell_id)
    
    SA_obj_aa = SA_helper(optim_param_path_aa,select_aa_param_path,param_mod_range,
                       opt_config_file)
    
    _,protocol_path,mech_path,feature_path,\
        param_bound_path = SA_obj_aa.load_config(model_base_path)
        
    # Make sure to get the parameter bounds big enough for BluePyOpt sim
    sens_param_bound_write_path_aa = "param_sensitivity_aa.json"
    optim_param_aa = SA_obj_aa.create_sa_bound(param_bound_path,
                                         sens_param_bound_write_path_aa)    
    param_dict_uc_aa = SA_obj_aa.create_sens_param_dict()
    parameters_aa ={key:optim_param_aa[val] for key,val in param_dict_uc_aa.items()}
    eval_handler_aa = Bpopt_Evaluator(protocol_path, feature_path,
                                   morph_path, sens_param_bound_write_path_aa,
                                   mech_path,
                                   ephys_dir=None,
                                   timed_evaluation = False)
    evaluator_aa = eval_handler_aa.create_evaluator()
    opt_aa = bpopt.optimisations.DEAPOptimisation(evaluator=evaluator_aa)
    
    
    stim_protocols = utility.load_json(protocol_path)
    stim_protocols = {key:val for key,val in stim_protocols.items() \
                      if 'LongDC' in key}
    stim_dict = {key:val['stimuli'][0]['amp'] \
                     for key,val in stim_protocols.items()}
    sorted_stim_tuple= sorted(stim_dict.items(), key=operator.itemgetter(1))
    
    stim_name= sorted_stim_tuple[-1][0] # knobs (the max amp)
    
    # Copy compiled modfiles
    if not os.path.isdir('x86_64'):
        raise Exception('Compiled modfiles do not exist')
    
    efel_features = utility.load_json(select_feature_path)
    un_features = un.EfelFeatures(features_to_run=efel_features)
    
    un_parameters_aa = un.Parameters(parameters_aa)
    un_parameters_aa.set_all_distributions(un.uniform(param_mod_range))
    un_model_aa = un.Model(run=nrnsim_bpopt, interpolate=True,
                 labels=["Time (ms)", "Membrane potential (mV)"],
                 opt=opt_aa,stim_protocols =stim_protocols,
                 param_dict_uc = param_dict_uc_aa,
                 stim_name=stim_name,
                 optim_param=optim_param_aa)
    
    
    # Perform the uncertainty quantification
    UQ_aa = un.UncertaintyQuantification(un_model_aa,
                                      parameters=un_parameters_aa,
                                      features=un_features)    
    data_folder = 'sensitivity_data'
    sa_filename_aa = 'sa_allactive_%s.h5'%cell_id
    sa_filename_aa_csv = 'sa_allactive_%s.csv'%cell_id
    sa_data_path_aa = os.path.join(data_folder,sa_filename_aa)
    sa_aa_csv_path = os.path.join(data_folder,sa_filename_aa_csv)
    
    UQ_aa.quantify(seed=0,CPUs=cpu_count,data_folder=data_folder,
                   filename= sa_filename_aa)
    _ = SA_obj_aa.save_analysis_data(sa_data_path_aa,
                                filepath=sa_aa_csv_path)
        
    cell_data_aa =  un.Data(sa_data_path_aa)
    SA_obj_aa.plot_sobol_analysis(cell_data_aa,analysis_path = \
                          'figures/sa_analysis_aa_%s.pdf'%cell_id,
                          palette='Set1')
    
    # Perisomatic model
    
    if perisomatic_sa:
    
        try:
            optim_param_path_peri = None
            SA_obj_peri = SA_helper(optim_param_path_peri,select_peri_param_path,param_mod_range,
                                   opt_config_file)
            _,_,mech_path_peri,_,\
                    param_bound_path_peri = SA_obj_peri.load_config(model_base_path,
                                                                perisomatic=True)
            
            sens_param_bound_write_path_peri = "param_sensitivity_peri.json"
            optim_param_peri = SA_obj_peri.create_sa_bound_peri(param_bound_path_peri,
                                                     sens_param_bound_write_path_peri)
            
            param_dict_uc_peri = SA_obj_peri.create_sens_param_dict()
            parameters_peri ={key:optim_param_peri[val] for key,val in param_dict_uc_peri.items()}
            eval_handler_peri = Bpopt_Evaluator(protocol_path, feature_path,
                                               morph_path, sens_param_bound_write_path_peri,
                                               mech_path_peri,
                                               ephys_dir=None,
                                               timed_evaluation = False)
            evaluator_peri = eval_handler_peri.create_evaluator()
            opt_peri = bpopt.optimisations.DEAPOptimisation(evaluator=evaluator_peri)
            un_parameters_peri= un.Parameters(parameters_peri)
            un_parameters_peri.set_all_distributions(un.uniform(param_mod_range))
            un_model_peri = un.Model(run=nrnsim_bpopt, interpolate=True,
                             labels=["Time (ms)", "Membrane potential (mV)"],
                             opt=opt_peri,stim_protocols =stim_protocols,
                             param_dict_uc = param_dict_uc_peri,
                             stim_name=stim_name,
                             optim_param=optim_param_peri)
            UQ_peri = un.UncertaintyQuantification(un_model_peri,
                                                  parameters=un_parameters_peri,
                                                  features=un_features)
            sa_filename_peri = 'sa_perisomatic_%s.h5'%cell_id
            sa_filename_peri_csv = 'sa_perisomatic_%s.csv'%cell_id
            sa_data_path_peri = os.path.join(data_folder,sa_filename_peri)
            sa_peri_csv_path = os.path.join(data_folder,sa_filename_peri_csv)
            
            UQ_peri.quantify(seed=0,CPUs=cpu_count,data_folder=data_folder,
                           filename= sa_filename_peri)
            _ = SA_obj_peri.save_analysis_data(sa_data_path_peri,
                                            filepath=sa_peri_csv_path)
            cell_data_peri =  un.Data(sa_data_path_peri)    
            SA_obj_peri.plot_sobol_analysis(cell_data_peri,analysis_path = \
                                      'figures/sa_analysis_peri_%s.pdf'%cell_id,
                                      palette='Set2')
        except Exception as e:
            print(e)
Ejemplo n.º 7
0
def generate_data_empty():  # pragma: no cover
    data = un.Data()

    data.save(os.path.join(test_data_dir, "test_save_empty"))
Ejemplo n.º 8
0
def calculate_error(glob_pattern, exact_data, base="data/"):
    files = glob.glob(base + glob_pattern)

    exact_mean = exact_data["valderrama"].mean
    exact_variance = exact_data["valderrama"].variance
    exact_sobol = exact_data["valderrama"].sobol_first

    mean_errors = {}
    variance_errors = {}
    sobol_errors = {}
    for file in tqdm(files):
        data = un.Data(file)

        mean = data["valderrama"].mean
        variance = data["valderrama"].variance
        sobol = data["valderrama"].sobol_first

        dt = data["valderrama"].time[1] - data["valderrama"].time[0]
        T = data["valderrama"].time[-1] - data["valderrama"].time[0]
        nr_evaluations = data["valderrama"].evaluations[0]
        sobol_evaluations = data["valderrama"].evaluations[1]

        mean_error = dt * np.sum(np.abs((exact_mean - mean) / exact_mean)) / T
        variance_error = dt * np.sum(
            np.abs((exact_variance - variance) / exact_variance)) / T
        sobol_error = dt * np.sum(np.abs((exact_sobol - sobol) / exact_sobol),
                                  axis=1) / T

        sobol_error = np.mean(sobol_error)

        if nr_evaluations not in mean_errors:
            mean_errors[nr_evaluations] = [mean_error]
        else:
            mean_errors[nr_evaluations].append(mean_error)

        if nr_evaluations not in variance_errors:
            variance_errors[nr_evaluations] = [variance_error]
        else:
            variance_errors[nr_evaluations].append(variance_error)

        if sobol_evaluations not in sobol_errors:
            sobol_errors[sobol_evaluations] = [sobol_error]
        else:
            sobol_errors[sobol_evaluations].append(sobol_error)

        del data

    sorted_nr_evaluations = []
    average_mean_errors = []
    average_variance_errors = []
    for evaluation in sorted(mean_errors.keys()):
        sorted_nr_evaluations.append(evaluation)
        average_mean_errors.append(np.mean(mean_errors[evaluation]))
        average_variance_errors.append(np.mean(variance_errors[evaluation]))

    sorted_sobol_evaluations = []
    average_sobol_errors = []
    for evaluation in sorted(sobol_errors.keys()):
        sorted_sobol_evaluations.append(evaluation)
        average_sobol_errors.append(np.mean(sobol_errors[evaluation]))

    return sorted_nr_evaluations, average_mean_errors, average_variance_errors, sorted_sobol_evaluations, average_sobol_errors
Ejemplo n.º 9
0
    for evaluation in sorted(mean_errors.keys()):
        sorted_nr_evaluations.append(evaluation)
        average_mean_errors.append(np.mean(mean_errors[evaluation]))
        average_variance_errors.append(np.mean(variance_errors[evaluation]))

    sorted_sobol_evaluations = []
    average_sobol_errors = []
    for evaluation in sorted(sobol_errors.keys()):
        sorted_sobol_evaluations.append(evaluation)
        average_sobol_errors.append(np.mean(sobol_errors[evaluation]))

    return sorted_nr_evaluations, average_mean_errors, average_variance_errors, sorted_sobol_evaluations, average_sobol_errors


# 3 uncertain parameters
exact_data_3 = un.Data("data/parameters_3/exact.h5")

pc_evaluations_3, pc_mean_errors_3, pc_variance_errors_3, pc_sobol_evaluations_3, pc_sobol_errors_3 = calculate_error(
    "parameters_3/pc_*", exact_data_3)
mc_evaluations_3, mc_mean_errors_3, mc_variance_errors_3, mc_sobol_evaluations_3, mc_sobol_errors_3 = calculate_error(
    "parameters_3/mc_*", exact_data_3)

# 11 uncertain parameters
exact_data_11 = un.Data("data/parameters_11/exact.h5")

pc_evaluations_11, pc_mean_errors_11, pc_variance_errors_11, pc_sobol_evaluations_11, pc_sobol_errors_11 = calculate_error(
    "parameters_11/pc_*", exact_data_11)
mc_evaluations_11, mc_mean_errors_11, mc_variance_errors_11, mc_sobol_evaluations_11, mc_sobol_errors_11 = calculate_error(
    "parameters_11/mc_*", exact_data_11)

with h5py.File("pc_mc.h5", "w") as f:
Ejemplo n.º 10
0
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import h5py
import chaospy as cp

from HodgkinHuxley import HodgkinHuxley

from prettyplot import prettyPlot, set_xlabel, set_ylabel, get_colormap
from prettyplot import fontsize, labelsize, titlesize, spines_color, set_style
from prettyplot import prettyBar, get_colormap_tableu20

labelsize = 16
ticksize = 14

data = un.Data("valderrama.h5")
time = data["valderrama"].time
mean = data["valderrama"].mean
variance = data["valderrama"].variance
percentile_95 = data["valderrama"].percentile_95
percentile_5 = data["valderrama"].percentile_5
sobol = data["valderrama"].sobol_first
V = data["valderrama"].evaluations

colors = [(0.898, 0, 0), (0.976, 0.729, 0.196), (0.259, 0.431, 0.525),
          (0.4375, 0.13671875, 0.4375)]
style = "seaborn-white"
linewidth = 3

###############################
#   Single result             #