Ejemplo n.º 1
0
def create_context_module(input_layer,
                          n_level_filters,
                          dropout_rate=0.3,
                          data_format="channels_first"):
    convolution1 = create_convolution_block(input_layer=input_layer,
                                            n_filters=n_level_filters)
    dropout = SpatialDropout3D(rate=dropout_rate,
                               data_format=data_format)(convolution1)
    convolution2 = create_convolution_block(input_layer=dropout,
                                            n_filters=n_level_filters)
    return convolution2
Ejemplo n.º 2
0
def isensee2017_model(input_shape=(4, 128, 128, 128),
                      n_base_filters=16,
                      depth=5,
                      dropout_rate=0.3,
                      n_segmentation_levels=3,
                      n_labels=4,
                      optimizer=Adam,
                      initial_learning_rate=5e-4,
                      loss_function=weighted_dice_coefficient_loss,
                      activation_name="sigmoid",
                      include_label_wise_dice_coefficients=True,
                      metrics=dice_coefficient):
    """
    This function builds a model proposed by Isensee et al. for the BRATS 2017 competition:
    https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf
    This network is highly similar to the model proposed by Kayalibay et al. "CNN-based Segmentation of Medical
    Imaging Data", 2017: https://arxiv.org/pdf/1701.03056.pdf
    :param input_shape:
    :param n_base_filters:
    :param depth:
    :param dropout_rate:
    :param n_segmentation_levels:
    :param n_labels:
    :param optimizer:
    :param initial_learning_rate:
    :param loss_function:
    :param activation_name:
    :return:
    """
    inputs = Input(input_shape)

    current_layer = inputs
    level_output_layers = list()
    level_filters = list()
    for level_number in range(depth):
        n_level_filters = (2**level_number) * n_base_filters
        level_filters.append(n_level_filters)

        if current_layer is inputs:
            in_conv = create_convolution_block(current_layer, n_level_filters)
        else:
            in_conv = create_convolution_block(current_layer,
                                               n_level_filters,
                                               strides=(2, 2, 2))

        context_output_layer = create_context_module(in_conv,
                                                     n_level_filters,
                                                     dropout_rate=dropout_rate)

        summation_layer = Add()([in_conv, context_output_layer])
        level_output_layers.append(summation_layer)
        current_layer = summation_layer

    segmentation_layers = list()
    for level_number in range(depth - 2, -1, -1):
        up_sampling = create_up_sampling_module(current_layer,
                                                level_filters[level_number])
        concatenation_layer = concatenate(
            [level_output_layers[level_number], up_sampling], axis=1)
        localization_output = create_localization_module(
            concatenation_layer, level_filters[level_number])
        current_layer = localization_output
        if level_number < n_segmentation_levels:
            segmentation_layers.insert(
                0,
                create_convolution_block(current_layer,
                                         n_filters=n_labels,
                                         kernel=(1, 1, 1)))

    output_layer = None
    for level_number in reversed(range(n_segmentation_levels)):
        segmentation_layer = segmentation_layers[level_number]
        if output_layer is None:
            output_layer = segmentation_layer
        else:
            output_layer = Add()([output_layer, segmentation_layer])

        if level_number > 0:
            output_layer = UpSampling3D(size=(2, 2, 2))(output_layer)

    activation_block = Activation(activation_name)(output_layer)

    model = Model(inputs=inputs, outputs=activation_block)

    if include_label_wise_dice_coefficients:
        lab_names = {0: 'Whole_Tumor', 1: 'Enhancing', 2: 'Tumor_Core'}

        label_wise_dice_metrics = [
            get_label_dice_coefficient_function(index, name)
            for index, name in lab_names.iteritems()
        ]

        metrics = label_wise_dice_metrics

    model.compile(optimizer=optimizer(lr=initial_learning_rate),
                  loss=loss_function,
                  metrics=metrics)
    return model
Ejemplo n.º 3
0
def create_up_sampling_module(input_layer, n_filters, size=(2, 2, 2)):
    up_sample = UpSampling3D(size=size)(input_layer)
    convolution = create_convolution_block(up_sample, n_filters)
    return convolution
Ejemplo n.º 4
0
def create_localization_module(input_layer, n_filters):
    convolution1 = create_convolution_block(input_layer, n_filters)
    convolution2 = create_convolution_block(convolution1,
                                            n_filters,
                                            kernel=(1, 1, 1))
    return convolution2