Ejemplo n.º 1
0
 def _evaluate_tuple(self, values: tuple):
     if not self.is_set_up:
         self.is_set_up = True
         checkpoint = torch.load(self.load_path)
         state_dict = checkpoint.get('state_dict', None)
         added_state = checkpoint.get('net_add_state', None)
         count_only_trainable = self.kwargs['count_only_trainable']
         assert state_dict is not None, added_state is not None
         # stem / head weights are in every model
         if count_only_trainable:
             self.const += count_parameters(
                 self.method.get_network().get_network().get_stem())
             self.const += count_parameters(
                 self.method.get_network().get_network().get_heads())
         else:
             for k, v in state_dict.items():
                 if '.stem.' in k or '.heads.' in k:
                     self.const += torch.numel(v)
         # variable num params depending on gene
         for choices in added_state.get('cells', list()):
             num_params = [0] * len(choices)
             for j, choice in enumerate(choices):
                 for name, shape, trainable in choice:
                     if trainable or not count_only_trainable:
                         num_params[j] += torch.numel(state_dict[name])
             self.choices.append(num_params)
     num_params = sum(self.get_params(i, g)
                      for i, g in enumerate(values)) + self.const
     return num_params
Ejemplo n.º 2
0
 def _build(self, s_in: Shape, s_out: Shape) -> ShapeList:
     """ build the network, count params, log, maybe load pretrained weights """
     s_in_net = s_in.copy(copy_id=True)
     super()._build(s_in, s_out)
     rows = [('cell index', 'input shapes', 'output shapes', '#params'),
             ('stem', s_in.str(), self.get_stem_output_shape(), count_parameters(self.get_stem()))]
     LoggerManager().get_logger().info('%s (%s):' % (self.__class__.__name__, self.model_name))
     for i, (s_in, s_out, cell) in enumerate(zip(self.get_cell_input_shapes(flatten=False),
                                                 self.get_cell_output_shapes(flatten=False), self.get_cells())):
         rows.append((i, s_in.str(), s_out.str(), count_parameters(cell)))
     rows.append(('head(s)', self.get_heads_input_shapes(), self.get_network_output_shapes(flatten=False),
                  count_parameters(self.get_heads())))
     rows.append(("complete network", s_in_net.str(), self.get_network_output_shapes(flatten=False),
                  count_parameters(self)))
     log_in_columns(LoggerManager().get_logger(), rows, start_space=4)
     return self.get_network_output_shapes(flatten=False)
Ejemplo n.º 3
0
def assert_stats_match(name,
                       task_cfg,
                       cfg: dict,
                       num_params=None,
                       num_macs=None):
    cfg_dir = replace_standard_paths('{path_tmp}/tests/cfgs/')
    cfg_path = Builder.save_config(cfg, cfg_dir, name)
    exp = Main.new_task(
        task_cfg,
        args_changes={
            '{cls_data}.fake': True,
            '{cls_data}.batch_size_train': 2,
            '{cls_data}.batch_size_test': -1,
            '{cls_task}.is_test_run': True,
            '{cls_task}.save_dir': '{path_tmp}/tests/workdir/',
            "{cls_network}.config_path": cfg_path,
            "{cls_trainer}.ema_decay": -1,
            'cls_network_heads':
            'ClassificationHead',  # necessary for the DARTS search space to disable the aux heads
        },
        raise_unparsed=False)
    net = exp.get_method().get_network()
    macs = exp.get_method().profile_macs()
    net.eval()
    # print(net)
    cp = count_parameters(net)
    if num_params is not None:
        assert cp == num_params, 'Got unexpected num params for %s: %d, expected %d, diff: %d'\
                                 % (name, cp, num_params, abs(cp - num_params))
    if num_macs is not None:
        assert macs == num_macs, 'Got unexpected num macs for %s: %d, expected %d, diff: %d'\
                                 % (name, macs, num_macs, abs(macs - num_macs))
Ejemplo n.º 4
0
        (256, ShuffleNetV2Layer,         defaults, dict(stride=2, k_size=7, act_fun='hswish', att_dict=att)),
        (256, ShuffleNetV2Layer,         defaults, dict(stride=1, k_size=3, act_fun='hswish', att_dict=att)),
        (256, ShuffleNetV2Layer,         defaults, dict(stride=1, k_size=7, act_fun='hswish', att_dict=att)),
        (256, ShuffleNetV2Layer,         defaults, dict(stride=1, k_size=5, act_fun='hswish', att_dict=att)),
        (256, ShuffleNetV2Layer,         defaults, dict(stride=1, k_size=5, act_fun='hswish', att_dict=att)),
        (256, ShuffleNetV2Layer,         defaults, dict(stride=1, k_size=3, act_fun='hswish', att_dict=att)),
        (256, ShuffleNetV2Layer,         defaults, dict(stride=1, k_size=7, act_fun='hswish', att_dict=att)),
        (256, ShuffleNetV2Layer,         defaults, dict(stride=1, k_size=3, act_fun='hswish', att_dict=att)),

        (512, ShuffleNetV2Layer,         defaults, dict(stride=2, k_size=7, act_fun='hswish', att_dict=att)),
        (512, ShuffleNetV2Layer,         defaults, dict(stride=1, k_size=5, act_fun='hswish', att_dict=att)),
        (512, ShuffleNetV2XceptionLayer, defaults, dict(stride=1, k_size=3, act_fun='hswish', att_dict=att)),
        (512, ShuffleNetV2Layer,         defaults, dict(stride=1, k_size=7, act_fun='hswish', att_dict=att)),

        (1280, ConvLayer, dict(), dict(k_size=1, bias=False, act_fun='hswish', act_inplace=True, order='w_bn_act',
                                       use_bn=True, bn_affine=True)),
    ])

    return get_network(StackedCellsNetworkBody, stem, head, cell_partials, cell_order, s_in, s_out)


if __name__ == '__main__':
    from uninas.utils.torch.misc import count_parameters
    from uninas.builder import Builder

    Builder()
    net = get_shufflenet_v2plus_medium().cuda()
    net.eval()
    print(net)
    print(count_parameters(net), count_parameters(net) - count_parameters(net.cells[:-1]))
Ejemplo n.º 5
0
def get_resnet34(s_in=Shape([3, 224, 224]), s_out=Shape([1000])) -> nn.Module:
    return _resnet(block=ResNetLayer, stages=(3, 4, 6, 3), expansion=1, s_in=s_in, s_out=s_out)


def get_resnet50(s_in=Shape([3, 224, 224]), s_out=Shape([1000])) -> nn.Module:
    return _resnet(block=ResNetBottleneckLayer, stages=(3, 4, 6, 3), expansion=4, s_in=s_in, s_out=s_out)


def get_resnet101(s_in=Shape([3, 224, 224]), s_out=Shape([1000])) -> nn.Module:
    return _resnet(block=ResNetBottleneckLayer, stages=(3, 4, 23, 3), expansion=4, s_in=s_in, s_out=s_out)


def get_resnet152(s_in=Shape([3, 224, 224]), s_out=Shape([1000])) -> nn.Module:
    return _resnet(block=ResNetBottleneckLayer, stages=(3, 8, 36, 3), expansion=4, s_in=s_in, s_out=s_out)


if __name__ == '__main__':
    from uninas.utils.torch.misc import count_parameters
    from uninas.builder import Builder

    Builder()
    net = get_resnet50().cuda()
    net.eval()
    print(net)
    print('params', count_parameters(net))
    print('cell params', count_parameters(net.cells))

    for j, cell in enumerate(net.cells):
        print(j, count_parameters(cell))
Ejemplo n.º 6
0
 def get_num_parameters(self) -> int:
     return count_parameters(self)
Ejemplo n.º 7
0
 def get_row(idx, name: str, obj: AbstractModule) -> tuple:
     s_in_str = obj.get_shape_in().str()
     s_inner = obj.get_cached('shape_inner')
     s_inner_str = '' if s_inner is None else s_inner.str()
     s_out_str = obj.get_shape_out().str()
     return str(idx), name, obj.__class__.__name__, s_in_str, s_inner_str, s_out_str, count_parameters(obj)
Ejemplo n.º 8
0
    def _build(self, s_in: Shape, s_out: Shape) -> ShapeList:
        LoggerManager().get_logger().info('Building %s:' % self.__class__.__name__)
        rows = [('cell index', 'name', 'class', 'input shapes', '', 'output shapes', '#params')]

        def get_row(idx, name: str, obj: AbstractModule) -> tuple:
            s_in_str = obj.get_shape_in().str()
            s_inner = obj.get_cached('shape_inner')
            s_inner_str = '' if s_inner is None else s_inner.str()
            s_out_str = obj.get_shape_out().str()
            return str(idx), name, obj.__class__.__name__, s_in_str, s_inner_str, s_out_str, count_parameters(obj)

        s_out_data = s_out.copy()
        out_shapes = self.stem.build(s_in)
        final_out_shapes = []
        rows.append(get_row('', '-', self.stem))

        # cells and (aux) heads
        updated_cell_order = []
        for i, cell_name in enumerate(self.cell_order):
            strategy_name, cell = self._get_cell(name=cell_name, cell_index=i)
            assert self.stem.num_outputs() == cell.num_inputs() == cell.num_outputs(), 'Cell does not fit the network!'
            updated_cell_order.append(cell.name)
            s_ins = out_shapes[-cell.num_inputs():]
            with StrategyManagerDefault(strategy_name):
                s_out = cell.build(s_ins.copy(),
                                   features_mul=self.features_mul,
                                   features_fixed=self.features_first_cell if i == 0 else -1)
            out_shapes.extend(s_out)
            rows.append(get_row(i, cell_name, cell))
            self.cells.append(cell)

            # optional (aux) head after every cell
            head = self._head_positions.get(i, None)
            if head is not None:
                if head.weight > 0:
                    final_out_shapes.append(head.build(s_out[-1], s_out_data))
                    rows.append(get_row('', '-', head))
                else:
                    LoggerManager().get_logger().info('not adding head after cell %d, weight <= 0' % i)
                    del self._head_positions[i]
            else:
                assert i != len(self.cell_order) - 1, "Must have a head after the final cell"

        # remove heads that are impossible to add
        for i in self._head_positions.keys():
            if i >= len(self.cells):
                LoggerManager().get_logger().warning('Can not add a head after cell %d which does not exist, deleting the head!' % i)
                head = self._head_positions.get(i)
                for j, head2 in enumerate(self.heads):
                    if head is head2:
                        self.heads.__delitem__(j)
                        break

        s_out = ShapeList(final_out_shapes)
        rows.append(('complete network', '', '', self.get_shape_in().str(), '', s_out.str(), count_parameters(self)))
        log_in_columns(LoggerManager().get_logger(), rows, start_space=4)
        self.set(cell_order=updated_cell_order)
        return s_out