Ejemplo n.º 1
0
def extend_mlp_exp():
    for s in [5]:
        for i in [1, 3, 4, 5]:
            for a in ['relu']:
                for e in [1, 2, 3, 4, 5, 10, 15]:
                    exp_data = {
                        'sparseness': s,
                        'index': i,
                        'epochs': 50,
                        'batch_size': 256,
                        'layers': [64, 32, 16, 8],
                        'reg_layers': [0, 0, 0, 0],
                        'fake_layers': [64, 32, 16, 8],
                        'fake_reg_layers': [0, 0, 0, 0],
                        'last_activation': a,
                        'fake_last_activation': a,
                        'learning_rate': 0.001,
                        'extend_near_num': e,
                        'learner': 'adagrad'
                    }
                    experiment.extend_mlp_model_exp.experiment(**exp_data)
    send_email(receiver='*****@*****.**',
               title='EXMLP实验结束',
               text="实验结束时间:{}".format(datetime.now()),
               **email_config)
Ejemplo n.º 2
0
def svd():
    for s in [1, 3]:
        for i in [1]:
            for e in [0]:
                experiment.svd_exp.experiment(s, i, 0.1, e, matrix_type='rt')
    send_email(receiver='*****@*****.**',
               title='SVD实验结束',
               text="",
               **email_config)
def main_fork():
    with Pool() as pool:
        extends = (1, 2, 3, 4, 5, 10, 15, 20)
        # extends = (1, 2)
        # pool.map_async(save_extend_array, [(s, i, extends, pool) for s in [5, 10, 15, 20] for i in range(1, 6)])
        pool.starmap(save_extend_array, [(s, i, extends)
                                         for s in [5, 10, 15, 20]
                                         for i in range(1, 6)])

    send_email(receiver='*****@*****.**',
               title='实验结束',
               text="",
               **email_config)
Ejemplo n.º 4
0
def ncf_exp():
    for s in [1, 3]:
        for i in [1]:
            for e in [0, 1, 2, 3, 4, 5, 10, 15, 20]:
                for d in [8]:
                    data = ExperimentData()
                    data.sparseness = s
                    data.data_index = i
                    data.mf_dim = d
                    data.epochs = 30
                    data.batch_size = 128
                    data.layers = [64, 32, 16]
                    data.reg_layers = [0, 0, 0]
                    data.learning_rate = 0.007
                    data.extend_near_num = e
                    data.learner = 'adam'
                    experiment.ncf_exp.experiment(data, 'relu', matrix_type='tp')

    send_email(receiver='*****@*****.**',
               title='NCF实验结束',
               text="",
               **email_config)
Ejemplo n.º 5
0
def mlp_exp():
    for s in [5, 10, 15, 20]:
        for i in [1]:
            for a in ['relu']:
                for e in [0, 1, 2, 3, 4, 5, 10, 15, 20]:
                    exp_data = {
                        'sparseness': s,
                        'index': i,
                        'epochs': 30,
                        'batch_size': 128,
                        'layers': [64, 32, 16],
                        'reg_layers': [0, 0, 0],
                        'last_activation': a,
                        'learning_rate': 0.007,
                        'extend_near_num': e,
                        'learner': 'adam',
                        'matrix_type': 'tp'
                    }
                    experiment.mlp_exp.experiment(**exp_data)
    send_email(receiver='*****@*****.**',
               title='MLP实验结束',
               text="",
               **email_config)
Ejemplo n.º 6
0
def gmf_exp():
    for s in [1, 3]:
        for i in [1, 2, 3, 4, 5]:
            for a in ['relu']:
                for d in [128]:
                    for e in [0, 1, 2, 3, 4, 5, 10, 15, 20]:
                        exp_data = {
                            'sparseness': s,
                            'index': i,
                            'epochs': 30,
                            'batch_size': 128,
                            'mf_dim': d,
                            'regs': [0, 0],
                            'last_activation': a,
                            'learning_rate': 0.007,
                            'extend_near_num': e,
                            'learner': 'adagrad'
                        }
                        experiment.gmf_exp.experiment(**exp_data)
    send_email(receiver='*****@*****.**',
               title='GMF实验结束',
               text="实验结束时间:{}".format(datetime.now()),
               **email_config)

if __name__ == '__main__':
    os.environ["CUDA_VISIBLE_DEVICES"] = "1"

    all_exp_data = []
    for s in [5]:
        for i in [2, 3, 4, 5]:
            for a in ['relu', 'sigmoid']:
                for e in [0, 5]:
                    if i == 2 and a == 'relu' and e == 0:
                        continue
                    exp_data = {
                        'sparseness': s,
                        'index': i,
                        'epochs': 30,
                        'batch_size': 128,
                        'layers': [64, 32, 16],
                        'reg_layers': [0, 0, 0],
                        'last_activation': a,
                        'learning_rate': 0.007,
                        'extend_near_num': e,
                        'learner': 'adagrad'
                    }
                    all_exp_data.append(experiment(**exp_data))
    text = '\n'.join(map(lambda d: str(d), all_exp_data))
    send_email(receiver='*****@*****.**',
               title='MLP实验结束',
               text=text,
               **email_config)
    VT1 = VT[:K, :]
    Sigma1 = np.eye(K) * Sigma[:K]
    R = np.matmul(np.matmul(U1, Sigma1), VT1)
    mae, rmse = evaluate(sparseness, index, R, matrix_type=matrix_type)
    exp_data["mae"] = float(mae)
    exp_data["rmse"] = float(rmse)
    exp_data['datetime'] = datetime.now()
    print(exp_data)
    auto_insert_database(database_remote_config, exp_data,
                         f'svd_{matrix_type}')
    # insert_database('experiment_data.db', "experiment_svd_rt", exp_data)


if __name__ == '__main__':
    args = []
    for s in [1, 3]:
        for i in [1]:
            for e in [0]:
                args.append((s, i, 0.1, e))

    from concurrent.futures import ThreadPoolExecutor

    with ThreadPoolExecutor() as executor:
        executor.map(lambda x: experiment(*x), args)
        executor.shutdown(wait=True)

    send_email(receiver='*****@*****.**',
               title='SVD实验结束',
               text="",
               **email_config)