Ejemplo n.º 1
0
    def __init__(self, *args, **kwargs):
        self._logger = logging.getLogger("jpbank.quants")
        self._logger.info("{0} initializing...".format(self.__class__.__name__))

        self._start_date = kwargs.get('start_date', date(2001, 1, 1))
        self._end_date = kwargs.get('end_date', date.today())
        self._ar_diff = kwargs.get('ar_diff', 3)
        self._frequency = kwargs.get('frequency', 'weekly')
        if self._frequency == 'daily':
            self._date_list = cf.create_daily_datelist(self._start_date, self._end_date)
            self._term = int(kwargs.get('term_year', 3) * 261)
        elif self._frequency == 'weekly':
            self._date_list = cf.create_weekly_datelist(self._start_date, self._end_date)
            self._term = int(kwargs.get('term_year', 3) * 52)
        else:
            self._date_list = cf.create_monthly_datelist(self._start_date, self._end_date)
            self._term = int(kwargs.get('term_year', 3) * 12)

        
        self._ccy_list = kwargs.get('ccy_list', 
                                    np.sort(['USDJPY Index', 'EURJPY Index', 'AUDJPY Index', 'GBPJPY Index', 
                                     'CADJPY Index', 'CHFJPY Index', 'NZDJPY Index']).tolist())

        self._order = kwargs.get('order', 0)
        if self._order == -1:
            self._reg = 'nc'
        elif self._order == 0:
            self._reg = 'c'
        elif self._oder == 1:
            self._reg = 'ct'
        self._fx_rate_df = np.log(self._get_fx_rate())
        self._logger.info("{0} initialized.".format(self.__class__.__name__))
Ejemplo n.º 2
0
 def create_macro_index(self, ticker, shifts=False):
     macro_query = "SELECT ValueDate, Ticker, Last \
                     FROM bbg_marketprice \
                     WHERE ValueDate BETWEEN '{0}' AND '{1}' \
                     AND Ticker = '{2}'"\
                    .format(self._start_date, 
                            self._end_date, 
                            ticker)
     with util.DBConnector(DBName='marketdb') as db_conn:
         macro_df = db_conn.get_data(macro_query).pivot(index='ValueDate',
                                                         columns='Ticker',
                                                         values='Last')\
                                                  .fillna(method='ffill')
     #import pdb;pdb.set_trace()
     if shifts: macro_df = macro_df.shift(1).dropna(axis=0)
     date_df = pd.DataFrame(cf.create_daily_datelist(start_date=self._start_date,
                                                     end_date=self._end_date),
                            columns=['ValueDate'])
     macro_df =  pd.merge(date_df, 
                           macro_df.reset_index('ValueDate'),
                           on='ValueDate', 
                           how='left')\
                    .set_index('ValueDate')\
                    .fillna(method='ffill')\
                    .fillna(method='bfill')
     return macro_df
Ejemplo n.º 3
0
    def create_factor(self, ticker_list):
        target_df = self._input_data.query("@self._start_date <= ValueDate <= @self._end_date & Ticker in @ticker_list")\
                                                     .pivot(index='ValueDate',
                                                            columns='Ticker',
                                                            values='Last')\
                                                     .fillna(method='ffill')

        date_df = pd.DataFrame(cf.create_daily_datelist(
            start_date=self._start_date, end_date=self._end_date),
                               columns=['ValueDate'])
        return pd.merge(date_df,
                              target_df.reset_index('ValueDate'),
                              on='ValueDate',
                              how='left')\
                       .set_index('ValueDate')\
                       .fillna(method='ffill')\
                       .fillna(method='bfill')
Ejemplo n.º 4
0
 def create_macro_index(self, ticker, shifts=False):
     macro_df = self._input_data.query("'{0}' <= ValueDate <= '{1}'Ticker '{2}'"
                            .format(self._start_date,
                                    self._end_date,
                                    ticker)).pivot(index='ValueDate',
                                                         columns='Ticker',
                                                         values='Last')\
                                                  .fillna(method='ffill')
     if shifts: macro_df = macro_df.shift(1).dropna(axis=0)
     date_df = pd.DataFrame(cf.create_daily_datelist(
         start_date=self._start_date, end_date=self._end_date),
                            columns=['ValueDate'])
     macro_df =  pd.merge(date_df,
                           macro_df.reset_index('ValueDate'),
                           on='ValueDate',
                           how='left')\
                    .set_index('ValueDate')\
                    .fillna(method='ffill')\
                    .fillna(method='bfill')
     return macro_df
Ejemplo n.º 5
0
 def create_factor(self, ticker_list):
     factor_query = "SELECT ValueDate, Ticker, Last \
                     FROM bbg_marketprice \
                     WHERE ValueDate BETWEEN '{0}' AND '{1}' \
                     AND Ticker IN ('{2}')"\
                    .format(self._start_date, 
                            self._end_date, 
                            "','".join(ticker_list))
     with util.DBConnector(DBName='marketdb') as db_conn:
         factor_df = db_conn.get_data(factor_query).pivot(index='ValueDate',
                                                         columns='Ticker',
                                                         values='Last')\
                                                  .fillna(method='ffill')
     date_df = pd.DataFrame(cf.create_daily_datelist(start_date=self._start_date,
                                                     end_date=self._end_date),
                            columns=['ValueDate'])
     factor_df =  pd.merge(date_df, 
                           factor_df.reset_index('ValueDate'),
                           on='ValueDate', 
                           how='left')\
                    .set_index('ValueDate')\
                    .fillna(method='ffill')\
                    .fillna(method='bfill')
     return factor_df
Ejemplo n.º 6
0
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self._logger.info("{0} initializing...".format(
            self.__class__.__name__))
        self._start_date = kwargs.get('start_date', None)
        self._end_date = kwargs.get('end_date', None)
        interval = kwargs.get('interval', 1)
        frequency = kwargs.get('frequency', 'weekly')
        if frequency == 'daily':
            date_list = cf.create_daily_datelist(self._start_date,
                                                 self._end_date)
        elif frequency == 'weekly':
            date_list = cf.create_weekly_datelist(self._start_date,
                                                  self._end_date)
        else:
            date_list = cf.create_monthly_datelist(self._start_date,
                                                   self._end_date)

        coint_vec_file = kwargs.get('coint_Vec_file', './input/coint_vec.csv')
        self._weight_df = cf.convert_date_format(pd.read_csv(coint_vec_file))\
                            .set_index('ValueDate').loc[date_list]

        self._fx_rate_df = np.log(
            cf.get_fx_rate(self._start_date, self._end_date,
                           self._weight_df.columns.tolist())).loc[date_list]
        #import pdb;pdb.set_trace()
        self._coint_index_df = pd.DataFrame(
            (self._fx_rate_df *
             self._weight_df[self._fx_rate_df.columns]).sum(axis=1),
            columns=['Price']).loc[date_list]

        #self._index_return_df = pd.DataFrame(self._coint_index_df[interval:] - self._coint_index_df[:-interval],
        #                                    index = self._fx_rate_df.index[:-interval],
        #                                    columns = ['Return'])#.loc[date_list]

        self._logger.info("{0} initialized.".format(self.__class__.__name__))