Ejemplo n.º 1
0
def train_and_eval_eccv(train, test):
    """
    train and test eccv dataset
    :param train:
    :param test:
    :return:
    """
    train_vec = list()
    train_label = list()
    test_vec = list()
    test_label = list()

    for k, v in train.items():
        feature = np.concatenate((extract_feature(k, layer_name="conv5_2"),
                                  extract_feature(k, layer_name="conv5_3")),
                                 axis=0)
        train_vec.append(feature)
        train_label.append(v)

    for k, v in test.items():
        feature = np.concatenate((extract_feature(k, layer_name="conv5_2"),
                                  extract_feature(k, layer_name="conv5_3")),
                                 axis=0)
        test_vec.append(feature)
        test_label.append(v)

    reg = linear_model.BayesianRidge()
    reg.fit(np.array(train_vec), np.array(train_label))
    mkdirs_if_not_exist('./model')
    joblib.dump(reg, config['eccv_fbp_reg_model'])

    predicted_label = reg.predict(np.array(test_vec))
    mae_lr = round(mean_absolute_error(np.array(test_label), predicted_label),
                   4)
    rmse_lr = round(
        math.sqrt(mean_squared_error(np.array(test_label), predicted_label)),
        4)
    pc = round(np.corrcoef(test_label, predicted_label)[0, 1], 4)

    print(
        '===============The Mean Absolute Error of Model is {0}===================='
        .format(mae_lr))
    print(
        '===============The Root Mean Square Error of Model is {0}===================='
        .format(rmse_lr))
    print(
        '===============The Pearson Correlation of Model is {0}===================='
        .format(pc))

    csv_tag = time.time()

    mkdirs_if_not_exist('./result')
    df = pd.DataFrame([mae_lr, rmse_lr, pc])
    df.to_csv('./result/performance_%s.csv' % csv_tag, index=False)

    out_result(list(test.keys()),
               predicted_label.flatten().tolist(),
               test_label,
               None,
               path='./result/detail_%s.csv' % csv_tag)
Ejemplo n.º 2
0
def train_and_eval_scutfbp(train_set_vector, test_set_vector, trainset_label,
                           testset_label, testset_filenames):
    """
    train and eval on SCUT-FBP dataset
    :param train_set_vector:
    :param test_set_vector:
    :param trainset_label:
    :param testset_label:
    :param testset_filenames
    :return:
    """
    print("The shape of training set is {0}".format(
        np.array(train_set_vector).shape))
    print("The shape of test set is {0}".format(
        np.array(test_set_vector).shape))
    reg = linear_model.BayesianRidge()
    reg.fit(train_set_vector, trainset_label)

    predicted_label = reg.predict(test_set_vector)
    mae_lr = round(mean_absolute_error(testset_label, predicted_label), 4)
    rmse_lr = round(
        math.sqrt(mean_squared_error(testset_label, predicted_label)), 4)
    pc = round(np.corrcoef(testset_label, predicted_label)[0, 1], 4)
    print(
        '===============The Mean Absolute Error of Model is {0}===================='
        .format(mae_lr))
    print(
        '===============The Root Mean Square Error of Model is {0}===================='
        .format(rmse_lr))
    print(
        '===============The Pearson Correlation of Model is {0}===================='
        .format(pc))

    mkdirs_if_not_exist('./model')
    joblib.dump(reg, './model/BayesRidge_SCUTFBP.pkl')
    print('The regression model has been persisted...')

    mkdirs_if_not_exist('./result')

    out_result(testset_filenames,
               predicted_label,
               testset_label,
               None,
               path='./result/Pred_GT_SCUTFBP.csv')

    df = pd.DataFrame([mae_lr, rmse_lr, pc])
    df.to_csv('./result/BayesRidge_SCUTFBP.csv', index=False)
    print('The result csv file has been generated...')
Ejemplo n.º 3
0
def cv_train(dataset, labels, cv=10):
    """
    train model with cross validation
    :param model:
    :param dataset:
    :param labels:
    :param cv:
    :return:
    """
    reg = linear_model.BayesianRidge()
    mae_list = -cross_val_score(reg,
                                dataset,
                                labels,
                                cv=cv,
                                n_jobs=-1,
                                scoring='neg_mean_absolute_error')
    rmse_list = np.sqrt(-cross_val_score(reg,
                                         dataset,
                                         labels,
                                         cv=cv,
                                         n_jobs=-1,
                                         scoring='neg_mean_squared_error'))
    pc_list = cross_val_score(reg,
                              dataset,
                              labels,
                              cv=cv,
                              n_jobs=-1,
                              scoring='r2')

    print(mae_list)
    print(rmse_list)
    print(pc_list)

    print('=========The Mean Absolute Error of Model is {0}========='.format(
        np.mean(mae_list)))
    print(
        '=========The Root Mean Square Error of Model is {0}========='.format(
            np.mean(rmse_list)))
    print('=========The Pearson Correlation of Model is {0}========='.format(
        np.mean(pc_list)))

    mkdirs_if_not_exist('./model')
    joblib.dump(reg, "./model/BayesRidge_SCUT-FBP.pkl")
    print('The regression model has been persisted...')
Ejemplo n.º 4
0
def train_and_eval_eccv_with_align_or_lean(aligned_train, aligned_test,
                                           lean_train, lean_test):
    """
    train and eval model with frontal faces and side faces
    :param aligned_train:
    :param aligned_test:
    :param lean_train:
    :param lean_test:
    :return:
    """
    aligned_train_vec = list()
    aligned_train_label = list()
    aligned_test_vec = list()
    aligned_test_label = list()

    lean_train_vec = list()
    lean_train_label = list()
    lean_test_vec = list()
    lean_test_label = list()

    test_filenames = list()
    attribute_list = list()

    for k, v in aligned_train.items():
        feature = np.concatenate((extract_feature(k, layer_name="conv5_2"),
                                  extract_feature(k, layer_name="conv5_3")),
                                 axis=0)
        aligned_train_vec.append(feature)
        aligned_train_label.append(v)

    for k, v in aligned_test.items():
        test_filenames.append(k)
        attribute_list.append('aligned')

        feature = np.concatenate((extract_feature(k, layer_name="conv5_2"),
                                  extract_feature(k, layer_name="conv5_3")),
                                 axis=0)
        aligned_test_vec.append(feature)
        aligned_test_label.append(v)

    for k, v in lean_train.items():
        feature = np.concatenate((extract_feature(k, layer_name="conv5_2"),
                                  extract_feature(k, layer_name="conv5_3")),
                                 axis=0)
        lean_train_vec.append(feature)
        lean_train_label.append(v)

    for k, v in lean_test.items():
        test_filenames.append(k)
        attribute_list.append('lean')

        feature = np.concatenate((extract_feature(k, layer_name="conv5_2"),
                                  extract_feature(k, layer_name="conv5_3")),
                                 axis=0)
        lean_test_vec.append(feature)
        lean_test_label.append(v)

    aligned_reg = linear_model.BayesianRidge()
    lean_reg = linear_model.BayesianRidge()

    aligned_reg.fit(np.array(aligned_train_vec), np.array(aligned_train_label))
    lean_reg.fit(np.array(lean_train_vec), np.array(lean_train_label))
    mkdirs_if_not_exist('./model')
    joblib.dump(aligned_reg, './model/eccv_fbp_dcnn_bayes_reg_aligned.pkl')
    joblib.dump(lean_reg, './model/eccv_fbp_dcnn_bayes_reg_lean.pkl')

    aligned_predicted_label = aligned_reg.predict(np.array(aligned_test_vec))
    lean_predicted_label = lean_reg.predict(np.array(lean_test_vec))

    predicted_label = aligned_predicted_label.tolist(
    ) + lean_predicted_label.tolist()
    test_label = aligned_test_label + lean_test_label

    mae_lr = round(
        mean_absolute_error(np.array(test_label), np.array(predicted_label)),
        4)
    rmse_lr = round(
        math.sqrt(
            mean_squared_error(np.array(test_label),
                               np.array(predicted_label))), 4)
    pc = round(np.corrcoef(test_label, predicted_label)[0, 1], 4)

    aligned_mae_lr = round(
        mean_absolute_error(np.array(aligned_test_label),
                            np.array(aligned_predicted_label.tolist())), 4)
    aligned_rmse_lr = round(
        math.sqrt(
            mean_squared_error(np.array(aligned_test_label),
                               np.array(aligned_predicted_label.tolist()))), 4)
    aligned_pc = round(
        np.corrcoef(aligned_test_label,
                    aligned_predicted_label.tolist())[0, 1], 4)

    lean_mae_lr = round(
        mean_absolute_error(np.array(lean_test_label),
                            np.array(lean_predicted_label)), 4)
    lean_rmse_lr = round(
        math.sqrt(
            mean_squared_error(np.array(lean_test_label),
                               np.array(lean_predicted_label))), 4)
    lean_pc = round(
        np.corrcoef(lean_test_label, lean_predicted_label)[0, 1], 4)

    print(
        '===============The Mean Absolute Error of Model is {0}===================='
        .format(mae_lr))
    print(
        '===============The Root Mean Square Error of Model is {0}===================='
        .format(rmse_lr))
    print(
        '===============The Pearson Correlation of Model is {0}===================='
        .format(pc))

    mkdirs_if_not_exist('./result')

    csv_file_tag = time.time()

    df = pd.DataFrame([mae_lr, rmse_lr, pc])
    df.to_csv('./result/%f_all.csv' % csv_file_tag, index=False)

    aligned_df = pd.DataFrame([aligned_mae_lr, aligned_rmse_lr, aligned_pc])
    aligned_df.to_csv('./result/%f_aligned.csv' % csv_file_tag, index=False)

    lean_df = pd.DataFrame([lean_mae_lr, lean_rmse_lr, lean_pc])
    lean_df.to_csv('./result/%f_lean.csv' % csv_file_tag, index=False)

    out_result(test_filenames, predicted_label, test_label, attribute_list,
               './result/%f_detail.csv' % csv_file_tag)
Ejemplo n.º 5
0
def train(train_set,
          test_set,
          train_label,
          test_label,
          data_name,
          test_filenames,
          dimension_reduce=False,
          distribute_training=False):
    """
    train ML model, evaluate on testset, and serialize it into a binary pickle file
    :param train_set:
    :param test_set:
    :param train_label:
    :param test_label:
    :param data_name
    :param test_filenames
    :param distribute_training
    :return:
    :Version:1.0
    """
    train_set = np.array(train_set)
    test_set = np.array(test_set)

    print("The shape of training set before dimension reduction is {0}".format(
        train_set.shape))
    print("The shape of test set before dimension reduction is {0}".format(
        test_set.shape))
    print('Use distribute training ? >> {0}'.format(distribute_training))
    reg = linear_model.BayesianRidge()

    if dimension_reduce:
        pca = PCA(n_components=128)
        train_set = pca.fit_transform(train_set)
        test_set = pca.fit_transform(test_set)

    print("The shape of training set after dimension reduction is {0}".format(
        train_set.shape))
    print("The shape of test set after dimension reduction is {0}".format(
        test_set.shape))

    if not distribute_training:
        reg.fit(train_set, train_label)
    else:
        train_set, test_set, train_label, test_label = da.array(
            train_set), da.array(test_set), da.array(train_label), da.array(
                test_label)
        reg.fit(train_set, train_label)

    predicted_label = reg.predict(test_set)
    mae_lr = round(mean_absolute_error(test_label, predicted_label), 4)
    rmse_lr = round(math.sqrt(mean_squared_error(test_label, predicted_label)),
                    4)
    pc = round(np.corrcoef(test_label, predicted_label)[0, 1], 4)
    print(
        '===============The Mean Absolute Error of Model is {0}===================='
        .format(mae_lr))
    print(
        '===============The Root Mean Square Error of Model is {0}===================='
        .format(rmse_lr))
    print(
        '===============The Pearson Correlation of Model is {0}===================='
        .format(pc))

    mkdirs_if_not_exist('./model')
    joblib.dump(reg, './model/BayesRidge_%s.pkl' % data_name)
    print('The regression model has been persisted...')

    mkdirs_if_not_exist('./result')

    out_result(test_filenames,
               predicted_label,
               test_label,
               None,
               path='./result/Pred_GT_{0}.csv'.format(data_name))

    df = pd.DataFrame([mae_lr, rmse_lr, pc])
    df.to_csv('./result/%s.csv' % data_name, index=False)
    print('The result csv file has been generated...')
Ejemplo n.º 6
0
def train_combinator(model,
                     dataloaders,
                     criterion,
                     optimizer,
                     scheduler,
                     num_epochs,
                     inference=False):
    """
    train combinator
    :param model:
    :param dataloaders:
    :param criterion:
    :param optimizer:
    :param scheduler:
    :param num_epochs:
    :param inference:
    :return:
    """
    print(model)
    model_name = model.__class__.__name__
    model = model.float()
    device = torch.device(
        'cuda:0' if torch.cuda.is_available() and cfg['use_gpu'] else 'cpu')

    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = nn.DataParallel(model)
    model = model.to(device)

    dataset_sizes = {
        x: dataloaders[x].__len__()
        for x in ['train', 'val', 'test']
    }

    if not inference:
        print('Start training %s...' % model_name)
        since = time.time()

        best_model_wts = copy.deepcopy(model.state_dict())
        best_record = {'pc': 0.0, 'epoch': 0}

        for epoch in range(num_epochs):
            print('-' * 100)
            print('Epoch {}/{}'.format(epoch, num_epochs - 1))

            # Each epoch has a training and validation phase
            for phase in ['train', 'val']:
                if phase == 'train':
                    if torch.__version__ <= '1.1.0':
                        scheduler.step()
                    model.train()  # Set model to training mode
                else:
                    model.eval()  # Set model to evaluate mode

                running_loss = 0.0
                epoch_gt = []
                epoch_pred = []

                # Iterate over data.
                # for data in dataloaders[phase]:
                for i, data in enumerate(dataloaders[phase], 0):

                    inputs = data['image']
                    scores = data['score']
                    classes = data['class']

                    inputs = inputs.to(device)
                    scores = scores.to(device).float()
                    classes = classes.to(device)

                    # zero the parameter gradients
                    optimizer.zero_grad()

                    # forward
                    # track history if only in train
                    with torch.set_grad_enabled(phase == 'train'):
                        regression_output, classification_output = model(
                            inputs)
                        regression_output = regression_output.view(-1)
                        _, predicted = torch.max(classification_output.data, 1)

                        loss = criterion(regression_output, scores,
                                         F.softmax(classification_output, 1),
                                         predicted, classes)

                        # backward + optimize only if in training phase
                        if phase == 'train':
                            loss.backward()
                            optimizer.step()

                    # statistics
                    running_loss += loss.item() * inputs.size(0)
                    epoch_gt += scores.to(
                        'cpu').detach().numpy().ravel().tolist()
                    epoch_pred += regression_output.to(
                        'cpu').detach().numpy().ravel().tolist()

                if phase == 'train':
                    if torch.__version__ >= '1.1.0':
                        scheduler.step()

                epoch_loss = running_loss / dataset_sizes[phase]

                epoch_mae = round(
                    mean_absolute_error(
                        np.array(epoch_gt).flatten(),
                        np.array(epoch_pred).flatten()), 4)
                epoch_rmse = round(
                    np.math.sqrt(
                        mean_squared_error(
                            np.array(epoch_gt).flatten(),
                            np.array(epoch_pred).flatten())), 4)
                epoch_pc = round(
                    np.corrcoef(
                        np.array(epoch_gt).flatten(),
                        np.array(epoch_pred).flatten())[0, 1], 4)

                print('[{}] Loss: {:.4f} MAE: {} RMSE: {} PC: {}'.format(
                    phase, epoch_loss, epoch_mae, epoch_rmse, epoch_pc))

                # deep copy the model
                if phase == 'val' and epoch_pc > best_record['pc']:
                    best_record['pc'] = epoch_pc
                    best_record['epoch'] = epoch
                    best_model_wts = copy.deepcopy(model.state_dict())

                    model.load_state_dict(best_model_wts)
                    mkdirs_if_not_exist('./model')
                    torch.save(
                        model.state_dict(),
                        './model/{0}_best_epoch-{1}.pth'.format(
                            model_name, epoch))

        time_elapsed = time.time() - since
        print('Training complete in {:.0f}m {:.0f}s'.format(
            time_elapsed // 60, time_elapsed % 60))
        print('+' * 100)
        print('Epoch {} achieves best PC: {:4f}'.format(
            best_record['epoch'], best_record['pc']))
        print('+' * 100)

        # load best model weights
        model.load_state_dict(best_model_wts)
        mkdirs_if_not_exist('./model')
        torch.save(model.state_dict(), './model/%s.pth' % model_name)
    else:
        print('Start testing %s...' % model_name)
        model.load_state_dict(
            torch.load(os.path.join('./model/%s.pth' % model_name)))

    model.eval()

    total = 0
    y_pred = []
    y_true = []
    filenames = []

    with torch.no_grad():
        for data in dataloaders['test']:
            images = data['image']
            images = images.to(device)

            filenames += data['filename']
            regression_output, classification_output = model(images)
            probs = F.softmax(classification_output, dim=1)
            cls = torch.from_numpy(
                np.array([[1.0, 2.0, 3.0, 4.0, 5.0]],
                         dtype=np.float).T).to(device)  # for SCUT-FBP*
            # cls = torch.from_numpy(np.array([[1.0, 2.0, 3.0]], dtype=np.float).T).to(device)  # for HotOrNot
            # expectation = torch.matmul(probs, cls.float()).view(-1).view(-1, 1)

            # output = (2 * regression_output + expectation) / 3
            output = regression_output
            total += images.size(0)

            y_pred += output.to("cpu").detach().numpy().tolist()
            y_true += data['score'].detach().numpy().tolist()

    mae = round(
        mean_absolute_error(
            np.array(y_true).ravel(),
            np.array(y_pred).ravel()), 4)
    rmse = round(
        np.math.sqrt(
            mean_squared_error(
                np.array(y_true).ravel(),
                np.array(y_pred).ravel())), 4)
    pc = round(
        np.corrcoef(np.array(y_true).ravel(),
                    np.array(y_pred).ravel())[0, 1], 4)

    print(
        '===============The Mean Absolute Error of {0} is {1}===================='
        .format(model_name, mae))
    print(
        '===============The Root Mean Square Error of {0} is {1}===================='
        .format(model_name, rmse))
    print(
        '===============The Pearson Correlation of {0} is {1}===================='
        .format(model_name, pc))

    col = ['filename', 'gt', 'pred']
    df = pd.DataFrame([[filenames[i], y_true[i], y_pred[i][0]]
                       for i in range(len(y_true))],
                      columns=col)
    df.to_excel("./{0}.xlsx".format(model_name),
                sheet_name='Output',
                index=False)
    print('Output Excel has been generated~')
Ejemplo n.º 7
0
def train_model(model,
                dataloaders,
                criterion,
                optimizer,
                scheduler,
                num_epochs,
                inference=False):
    """
    train model
    :param model:
    :param dataloaders:
    :param criterion:
    :param optimizer:
    :param scheduler:
    :param num_epochs:
    :param inference:
    :return:
    """
    print(model)
    model_name = model.__class__.__name__
    model = model.float()
    device = torch.device(
        'cuda:0' if torch.cuda.is_available() and cfg['use_gpu'] else 'cpu')

    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = nn.DataParallel(model)
    model = model.to(device)

    dataset_sizes = {
        x: len(dataloaders[x].dataset)
        for x in ['train', 'val', 'test']
    }

    for k, v in dataset_sizes.items():
        print('Dataset size of {0} is {1}...'.format(k, v))

    if not inference:
        print('Start training %s...' % model_name)
        since = time.time()

        best_model_wts = copy.deepcopy(model.state_dict())
        best_ssim = 0.0
        best_cosine_similarity = 0.0
        best_l2_dis = float('inf')

        for epoch in range(num_epochs):
            print('-' * 100)
            print('Epoch {}/{}'.format(epoch, num_epochs - 1))

            # Each epoch has a training and validation phase
            for phase in ['train', 'val']:
                if phase == 'train':
                    if torch.__version__ <= '1.1.0':
                        scheduler.step()
                    model.train()  # Set model to training mode
                else:
                    model.eval()  # Set model to evaluate mode

                running_loss = 0.0
                running_ssim = 0.0
                running_l2_dis = 0.0
                running_cos_sim = 0.0

                # Iterate over data.
                # for data in dataloaders[phase]:
                for i, data in enumerate(dataloaders[phase], 0):

                    inputs = data['image']
                    inputs = inputs.to(device)

                    # zero the parameter gradients
                    optimizer.zero_grad()

                    # forward
                    # track history if only in train
                    with torch.set_grad_enabled(phase == 'train'):
                        outputs = model(inputs)

                        loss = criterion(outputs, inputs)

                        # backward + optimize only if in training phase
                        if phase == 'train':
                            loss.sum().backward()
                            optimizer.step()

                    # statistics
                    running_loss += loss.sum() * inputs.size(0)
                    running_cos_sim += 1 - spatial.distance.cosine(
                        outputs.to('cpu').detach().numpy().ravel(),
                        inputs.to('cpu').detach().numpy().ravel())
                    running_l2_dis += np.linalg.norm(
                        outputs.to('cpu').detach().numpy().ravel() -
                        inputs.to('cpu').detach().numpy().ravel())
                    running_ssim += ssim.ssim(outputs, inputs)

                if phase == 'train':
                    if torch.__version__ >= '1.1.0':
                        scheduler.step()

                epoch_loss = running_loss / dataset_sizes[phase]
                epoch_l2_dis = running_l2_dis / dataset_sizes[phase]
                epoch_cos_sim = running_cos_sim / dataset_sizes[phase]
                epoch_ssim = running_ssim / dataset_sizes[phase]

                print(
                    '{} Loss: {:.4f} L2_Distance: {} Cosine_Similarity: {} SSIM: {}'
                    .format(phase, epoch_loss, epoch_l2_dis, epoch_cos_sim,
                            epoch_ssim))

                # deep copy the model
                if phase == 'val' and epoch_l2_dis <= best_l2_dis:
                    best_l2_dis = epoch_l2_dis
                    best_model_wts = copy.deepcopy(model.state_dict())

                    model.load_state_dict(best_model_wts)
                    model_path_dir = './model'
                    mkdirs_if_not_exist(model_path_dir)
                    state_dict = model.module.state_dict(
                    ) if torch.cuda.device_count() > 1 else model.state_dict()
                    torch.save(
                        state_dict, './model/{0}_best_epoch-{1}.pth'.format(
                            model_name, epoch))

        time_elapsed = time.time() - since
        print('Training complete in {:.0f}m {:.0f}s'.format(
            time_elapsed // 60, time_elapsed % 60))
        print('Best L2_Distance: {:4f}'.format(best_l2_dis))

        # load best model weights
        model.load_state_dict(best_model_wts)
        model_path_dir = './model'
        mkdirs_if_not_exist(model_path_dir)
        state_dict = model.module.state_dict(
        ) if torch.cuda.device_count() > 1 else model.state_dict()
        torch.save(state_dict, './model/%s.pth' % model_name)
    else:
        print('Start testing %s...' % model.__class__.__name__)
        model.load_state_dict(
            torch.load(os.path.join('./model/%s.pth' % model_name)))

    model.eval()

    cos_sim, l2_dist, ssim_ = 0.0, 0.0, 0.0

    with torch.no_grad():
        for data in dataloaders['test']:
            images = data['image']
            images = images.to(device)
            outputs = model(images)

            cos_sim += 1 - spatial.distance.cosine(
                outputs.to('cpu').detach().numpy().ravel(),
                images.to('cpu').detach().numpy().ravel())
            l2_dist += np.linalg.norm(
                outputs.to('cpu').detach().numpy().ravel() -
                images.to('cpu').detach().numpy().ravel())
            ssim_ += ssim.ssim(outputs, images)

    print('*' * 200)
    print('Avg L2 Distance of {0} on test set: {1}'.format(
        model_name, l2_dist / dataset_sizes['test']))
    print('Avg CosineSimilarity of {0} on test set: {1}'.format(
        model_name, cos_sim / dataset_sizes['test']))
    print('Avg SSIM of {0} on test set: {1}'.format(
        model_name, ssim_ / dataset_sizes['test']))
    print('*' * 200)