Ejemplo n.º 1
0
def train():
    do_cache_dataset = True

    # pylint: disable=too-many-boolean-expressions
    if (FLAGS.data_aug_features_multiplicative > 0 or
            FLAGS.data_aug_features_additive > 0 or
            FLAGS.augmentation_spec_dropout_keeprate < 1 or
            FLAGS.augmentation_freq_and_time_masking or
            FLAGS.augmentation_pitch_and_tempo_scaling or
            FLAGS.augmentation_speed_up_std > 0 or
            FLAGS.augmentation_sparse_warp):
        do_cache_dataset = False

    exception_box = ExceptionBox()

    # Create training and validation datasets
    train_set = create_dataset(FLAGS.train_files.split(','),
                               batch_size=FLAGS.train_batch_size,
                               enable_cache=FLAGS.feature_cache and do_cache_dataset,
                               cache_path=FLAGS.feature_cache,
                               train_phase=True,
                               exception_box=exception_box,
                               process_ahead=len(Config.available_devices) * FLAGS.train_batch_size * 2,
                               buffering=FLAGS.read_buffer)

    iterator = tfv1.data.Iterator.from_structure(tfv1.data.get_output_types(train_set),
                                                 tfv1.data.get_output_shapes(train_set),
                                                 output_classes=tfv1.data.get_output_classes(train_set))

    # Make initialization ops for switching between the two sets
    train_init_op = iterator.make_initializer(train_set)

    if FLAGS.dev_files:
        dev_sources = FLAGS.dev_files.split(',')
        dev_sets = [create_dataset([source],
                                   batch_size=FLAGS.dev_batch_size,
                                   train_phase=False,
                                   exception_box=exception_box,
                                   process_ahead=len(Config.available_devices) * FLAGS.dev_batch_size * 2,
                                   buffering=FLAGS.read_buffer) for source in dev_sources]
        dev_init_ops = [iterator.make_initializer(dev_set) for dev_set in dev_sets]

    # Dropout
    dropout_rates = [tfv1.placeholder(tf.float32, name='dropout_{}'.format(i)) for i in range(6)]
    dropout_feed_dict = {
        dropout_rates[0]: FLAGS.dropout_rate,
        dropout_rates[1]: FLAGS.dropout_rate2,
        dropout_rates[2]: FLAGS.dropout_rate3,
        dropout_rates[3]: FLAGS.dropout_rate4,
        dropout_rates[4]: FLAGS.dropout_rate5,
        dropout_rates[5]: FLAGS.dropout_rate6,
    }
    no_dropout_feed_dict = {
        rate: 0. for rate in dropout_rates
    }

    # Building the graph
    learning_rate_var = tfv1.get_variable('learning_rate', initializer=FLAGS.learning_rate, trainable=False)
    reduce_learning_rate_op = learning_rate_var.assign(tf.multiply(learning_rate_var, FLAGS.plateau_reduction))
    optimizer = create_optimizer(learning_rate_var)

    # Enable mixed precision training
    if FLAGS.automatic_mixed_precision:
        log_info('Enabling automatic mixed precision training.')
        optimizer = tfv1.train.experimental.enable_mixed_precision_graph_rewrite(optimizer)

    gradients, loss, non_finite_files = get_tower_results(iterator, optimizer, dropout_rates)

    # Average tower gradients across GPUs
    avg_tower_gradients = average_gradients(gradients)
    log_grads_and_vars(avg_tower_gradients)

    # global_step is automagically incremented by the optimizer
    global_step = tfv1.train.get_or_create_global_step()
    apply_gradient_op = optimizer.apply_gradients(avg_tower_gradients, global_step=global_step)

    # Summaries
    step_summaries_op = tfv1.summary.merge_all('step_summaries')
    step_summary_writers = {
        'train': tfv1.summary.FileWriter(os.path.join(FLAGS.summary_dir, 'train'), max_queue=120),
        'dev': tfv1.summary.FileWriter(os.path.join(FLAGS.summary_dir, 'dev'), max_queue=120)
    }

    # Checkpointing
    checkpoint_saver = tfv1.train.Saver(max_to_keep=FLAGS.max_to_keep)
    checkpoint_path = os.path.join(FLAGS.save_checkpoint_dir, 'train')

    best_dev_saver = tfv1.train.Saver(max_to_keep=1)
    best_dev_path = os.path.join(FLAGS.save_checkpoint_dir, 'best_dev')

    # Save flags next to checkpoints
    os.makedirs(FLAGS.save_checkpoint_dir, exist_ok=True)
    flags_file = os.path.join(FLAGS.save_checkpoint_dir, 'flags.txt')
    with open(flags_file, 'w') as fout:
        fout.write(FLAGS.flags_into_string())

    with tfv1.Session(config=Config.session_config) as session:
        log_debug('Session opened.')

        # Prevent further graph changes
        tfv1.get_default_graph().finalize()

        # Load checkpoint or initialize variables
        if FLAGS.load == 'auto':
            method_order = ['best', 'last', 'init']
        else:
            method_order = [FLAGS.load]
        load_or_init_graph(session, method_order)

        def run_set(set_name, epoch, init_op, dataset=None):
            is_train = set_name == 'train'
            train_op = apply_gradient_op if is_train else []
            feed_dict = dropout_feed_dict if is_train else no_dropout_feed_dict

            total_loss = 0.0
            step_count = 0

            step_summary_writer = step_summary_writers.get(set_name)
            checkpoint_time = time.time()

            # Setup progress bar
            class LossWidget(progressbar.widgets.FormatLabel):
                def __init__(self):
                    progressbar.widgets.FormatLabel.__init__(self, format='Loss: %(mean_loss)f')

                def __call__(self, progress, data, **kwargs):
                    data['mean_loss'] = total_loss / step_count if step_count else 0.0
                    return progressbar.widgets.FormatLabel.__call__(self, progress, data, **kwargs)

            prefix = 'Epoch {} | {:>10}'.format(epoch, 'Training' if is_train else 'Validation')
            widgets = [' | ', progressbar.widgets.Timer(),
                       ' | Steps: ', progressbar.widgets.Counter(),
                       ' | ', LossWidget()]
            suffix = ' | Dataset: {}'.format(dataset) if dataset else None
            pbar = create_progressbar(prefix=prefix, widgets=widgets, suffix=suffix).start()

            # Initialize iterator to the appropriate dataset
            session.run(init_op)

            # Batch loop
            while True:
                try:
                    _, current_step, batch_loss, problem_files, step_summary = \
                        session.run([train_op, global_step, loss, non_finite_files, step_summaries_op],
                                    feed_dict=feed_dict)
                    exception_box.raise_if_set()
                except tf.errors.InvalidArgumentError as err:
                    if FLAGS.augmentation_sparse_warp:
                        log_info("Ignoring sparse warp error: {}".format(err))
                        continue
                    else:
                        raise
                except tf.errors.OutOfRangeError:
                    exception_box.raise_if_set()
                    break

                if problem_files.size > 0:
                    problem_files = [f.decode('utf8') for f in problem_files[..., 0]]
                    log_error('The following files caused an infinite (or NaN) '
                              'loss: {}'.format(','.join(problem_files)))

                total_loss += batch_loss
                step_count += 1

                pbar.update(step_count)

                step_summary_writer.add_summary(step_summary, current_step)

                if is_train and FLAGS.checkpoint_secs > 0 and time.time() - checkpoint_time > FLAGS.checkpoint_secs:
                    checkpoint_saver.save(session, checkpoint_path, global_step=current_step)
                    checkpoint_time = time.time()

            pbar.finish()
            mean_loss = total_loss / step_count if step_count > 0 else 0.0
            return mean_loss, step_count

        log_info('STARTING Optimization')
        train_start_time = datetime.utcnow()
        best_dev_loss = float('inf')
        dev_losses = []
        epochs_without_improvement = 0
        try:
            for epoch in range(FLAGS.epochs):
                # Training
                log_progress('Training epoch %d...' % epoch)
                train_loss, _ = run_set('train', epoch, train_init_op)
                log_progress('Finished training epoch %d - loss: %f' % (epoch, train_loss))
                checkpoint_saver.save(session, checkpoint_path, global_step=global_step)

                if FLAGS.dev_files:
                    # Validation
                    dev_loss = 0.0
                    total_steps = 0
                    for source, init_op in zip(dev_sources, dev_init_ops):
                        log_progress('Validating epoch %d on %s...' % (epoch, source))
                        set_loss, steps = run_set('dev', epoch, init_op, dataset=source)
                        dev_loss += set_loss * steps
                        total_steps += steps
                        log_progress('Finished validating epoch %d on %s - loss: %f' % (epoch, source, set_loss))

                    dev_loss = dev_loss / total_steps
                    dev_losses.append(dev_loss)

                    # Count epochs without an improvement for early stopping and reduction of learning rate on a plateau
                    # the improvement has to be greater than FLAGS.es_min_delta
                    if dev_loss > best_dev_loss - FLAGS.es_min_delta:
                        epochs_without_improvement += 1
                    else:
                        epochs_without_improvement = 0

                    # Save new best model
                    if dev_loss < best_dev_loss:
                        best_dev_loss = dev_loss
                        save_path = best_dev_saver.save(session, best_dev_path, global_step=global_step, latest_filename='best_dev_checkpoint')
                        log_info("Saved new best validating model with loss %f to: %s" % (best_dev_loss, save_path))

                    # Early stopping
                    if FLAGS.early_stop and epochs_without_improvement == FLAGS.es_epochs:
                        log_info('Early stop triggered as the loss did not improve the last {} epochs'.format(
                            epochs_without_improvement))
                        break

                    # Reduce learning rate on plateau
                    if (FLAGS.reduce_lr_on_plateau and
                            epochs_without_improvement % FLAGS.plateau_epochs == 0 and epochs_without_improvement > 0):
                        # If the learning rate was reduced and there is still no improvement
                        # wait FLAGS.plateau_epochs before the learning rate is reduced again
                        session.run(reduce_learning_rate_op)
                        current_learning_rate = learning_rate_var.eval()
                        log_info('Encountered a plateau, reducing learning rate to {}'.format(
                            current_learning_rate))

        except KeyboardInterrupt:
            pass
        log_info('FINISHED optimization in {}'.format(datetime.utcnow() - train_start_time))
    log_debug('Session closed.')
Ejemplo n.º 2
0
def train():
    do_cache_dataset = True

    # pylint: disable=too-many-boolean-expressions
    if (FLAGS.data_aug_features_multiplicative > 0 or
            FLAGS.data_aug_features_additive > 0 or
            FLAGS.augmentation_spec_dropout_keeprate < 1 or
            FLAGS.augmentation_freq_and_time_masking or
            FLAGS.augmentation_pitch_and_tempo_scaling or
            FLAGS.augmentation_speed_up_std > 0 or
            FLAGS.augmentation_sparse_warp):
        do_cache_dataset = False

    # Create training and validation datasets
    train_set = create_dataset(FLAGS.train_files.split(','),
                               batch_size=FLAGS.train_batch_size,
                               enable_cache=FLAGS.feature_cache and do_cache_dataset,
                               cache_path=FLAGS.feature_cache,
                               train_phase=True)

    iterator = tfv1.data.Iterator.from_structure(tfv1.data.get_output_types(train_set),
                                                 tfv1.data.get_output_shapes(train_set),
                                                 output_classes=tfv1.data.get_output_classes(train_set))

    # Make initialization ops for switching between the two sets
    train_init_op = iterator.make_initializer(train_set)

    if FLAGS.dev_files:
        dev_csvs = FLAGS.dev_files.split(',')
        dev_sets = [create_dataset([csv], batch_size=FLAGS.dev_batch_size, train_phase=False) for csv in dev_csvs]
        dev_init_ops = [iterator.make_initializer(dev_set) for dev_set in dev_sets]

    # The transfer learning approach here need us to supply the layers which we
    # want to exclude from the source model.
    # Say we want to exclude all layers except for the first one, we can use this:
    #
    #    drop_source_layers=['2', '3', 'lstm', '5', '6']
    #
    # If we want to use all layers from the source model except the last one, we use this:
    #
    #    drop_source_layers=['6']
    #

    if FLAGS.load == "transfer":
        drop_source_layers = ['2', '3', 'lstm', '5', '6'][-int(FLAGS.drop_source_layers):]
    else:
        drop_source_layers=None
    
    # Dropout
    dropout_rates = [tfv1.placeholder(tf.float32, name='dropout_{}'.format(i)) for i in range(6)]
    dropout_feed_dict = {
        dropout_rates[0]: FLAGS.dropout_rate,
        dropout_rates[1]: FLAGS.dropout_rate2,
        dropout_rates[2]: FLAGS.dropout_rate3,
        dropout_rates[3]: FLAGS.dropout_rate4,
        dropout_rates[4]: FLAGS.dropout_rate5,
        dropout_rates[5]: FLAGS.dropout_rate6,
    }
    no_dropout_feed_dict = {
        rate: 0. for rate in dropout_rates
    }

    # Building the graph
    optimizer = create_optimizer()

    # Enable mixed precision training
    if FLAGS.automatic_mixed_precision:
        log_info('Enabling automatic mixed precision training.')
        optimizer = tfv1.train.experimental.enable_mixed_precision_graph_rewrite(optimizer)

    gradients, loss, non_finite_files = get_tower_results(iterator, optimizer, dropout_rates, drop_source_layers)

    # Average tower gradients across GPUs
    avg_tower_gradients = average_gradients(gradients)
    log_grads_and_vars(avg_tower_gradients)

    # global_step is automagically incremented by the optimizer
    global_step = tfv1.train.get_or_create_global_step()
    apply_gradient_op = optimizer.apply_gradients(avg_tower_gradients, global_step=global_step)

    # Summaries
    step_summaries_op = tfv1.summary.merge_all('step_summaries')
    step_summary_writers = {
        'train': tfv1.summary.FileWriter(os.path.join(FLAGS.summary_dir, 'train'), max_queue=120),
        'dev': tfv1.summary.FileWriter(os.path.join(FLAGS.summary_dir, 'dev'), max_queue=120)
    }

    # Checkpointing
    checkpoint_saver = tfv1.train.Saver(max_to_keep=FLAGS.max_to_keep)
    checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 'train')

    best_dev_saver = tfv1.train.Saver(max_to_keep=1)
    best_dev_path = os.path.join(FLAGS.checkpoint_dir, 'best_dev')

    # Save flags next to checkpoints
    os.makedirs(FLAGS.checkpoint_dir, exist_ok=True)

    flags_file = os.path.join(FLAGS.checkpoint_dir, 'flags.txt')
    with open(flags_file, 'w') as fout:
        fout.write(FLAGS.flags_into_string())

    initializer = tfv1.global_variables_initializer()

    with tfv1.Session(config=Config.session_config) as session:
        log_debug('Session opened.')

        # Loading or initializing
        loaded = False

        # Initialize training from a CuDNN RNN checkpoint
        if FLAGS.cudnn_checkpoint:
            if FLAGS.use_cudnn_rnn:
                log_error('Trying to use --cudnn_checkpoint but --use_cudnn_rnn '
                          'was specified. The --cudnn_checkpoint flag is only '
                          'needed when converting a CuDNN RNN checkpoint to '
                          'a CPU-capable graph. If your system is capable of '
                          'using CuDNN RNN, you can just specify the CuDNN RNN '
                          'checkpoint normally with --checkpoint_dir.')
                sys.exit(1)

            log_info('Converting CuDNN RNN checkpoint from {}'.format(FLAGS.cudnn_checkpoint))
            ckpt = tfv1.train.load_checkpoint(FLAGS.cudnn_checkpoint)
            missing_variables = []

            # Load compatible variables from checkpoint
            for v in tfv1.global_variables():
                try:
                    v.load(ckpt.get_tensor(v.op.name), session=session)
                except tf.errors.NotFoundError:
                    missing_variables.append(v)

            # Check that the only missing variables are the Adam moment tensors
            if any('Adam' not in v.op.name for v in missing_variables):
                log_error('Tried to load a CuDNN RNN checkpoint but there were '
                          'more missing variables than just the Adam moment '
                          'tensors.')
                sys.exit(1)

            # Initialize Adam moment tensors from scratch to allow use of CuDNN
            # RNN checkpoints.
            log_info('Initializing missing Adam moment tensors.')
            init_op = tfv1.variables_initializer(missing_variables)
            session.run(init_op)
            loaded = True
			
        

        if not loaded and FLAGS.load in ['auto', 'last']:
            #tf.initialize_all_variables().run()
            tfv1.get_default_graph().finalize()			
            loaded = try_loading(session, checkpoint_saver, 'checkpoint', 'most recent')
        if not loaded and FLAGS.load in ['auto', 'best']:
            #tf.initialize_all_variables().run()
            tfv1.get_default_graph().finalize()
            loaded = try_loading(session, best_dev_saver, 'best_dev_checkpoint', 'best validation')
        if not loaded : 
            if FLAGS.load == "transfer":
                if FLAGS.source_model_checkpoint_dir:
                    print('Initializing model from', FLAGS.source_model_checkpoint_dir)
                    ckpt = tfv1.train.load_checkpoint(FLAGS.source_model_checkpoint_dir)
                    variables = list(ckpt.get_variable_to_shape_map().keys())
                    print('variable', variables)
                    print('global', tf.global_variables())				
                    # Load desired source variables
                    missing_variables2 = []				
                    for v in tf.global_variables():
                        if not any(layer in v.op.name for layer in drop_source_layers):
                            print('Loading', v.op.name)
                            try:						
                                v.load(ckpt.get_tensor(v.op.name), session=session)
                                print('OK')
                            except tf.errors.NotFoundError:
                                missing_variables2.append(v)
                                print('KO')
                            except ValueError:
                                #missing_variables2.append(v)
                                print('KO for valueError')						
                    print('missing_variables =', missing_variables2)					
                    # Initialize all variables needed for DS, but not loaded from ckpt
                    
                    init_op = tfv1.variables_initializer(
                        [v for v in tf.global_variables()
                        if any(layer in v.op.name
                                for layer in drop_source_layers)
                        ] + missing_variables2)
                    tfv1.get_default_graph().finalize()
                    session.run(init_op)
                   
			
            elif FLAGS.load in ['auto', 'init']:
                log_info('Initializing variables...')
                tfv1.get_default_graph().finalize()
                session.run(initializer)
            else:
                log_error('Unable to load %s model from specified checkpoint dir'
                        ' - consider using load option "auto" or "init".' % FLAGS.load)
                sys.exit(1)


        def run_set(set_name, epoch, init_op, dataset=None):
            is_train = set_name == 'train'
            train_op = apply_gradient_op if is_train else []
            feed_dict = dropout_feed_dict if is_train else no_dropout_feed_dict

            total_loss = 0.0
            step_count = 0

            step_summary_writer = step_summary_writers.get(set_name)
            checkpoint_time = time.time()

            # Setup progress bar
            class LossWidget(progressbar.widgets.FormatLabel):
                def __init__(self):
                    progressbar.widgets.FormatLabel.__init__(self, format='Loss: %(mean_loss)f')

                def __call__(self, progress, data, **kwargs):
                    data['mean_loss'] = total_loss / step_count if step_count else 0.0
                    return progressbar.widgets.FormatLabel.__call__(self, progress, data, **kwargs)

            prefix = 'Epoch {} | {:>10}'.format(epoch, 'Training' if is_train else 'Validation')
            widgets = [' | ', progressbar.widgets.Timer(),
                       ' | Steps: ', progressbar.widgets.Counter(),
                       ' | ', LossWidget()]
            suffix = ' | Dataset: {}'.format(dataset) if dataset else None
            pbar = create_progressbar(prefix=prefix, widgets=widgets, suffix=suffix).start()

            # Initialize iterator to the appropriate dataset
            session.run(init_op)

            # Batch loop
            while True:
                try:
                    _, current_step, batch_loss, problem_files, step_summary = \
                        session.run([train_op, global_step, loss, non_finite_files, step_summaries_op],
                                    feed_dict=feed_dict)
                except tf.errors.InvalidArgumentError as err:
                    if FLAGS.augmentation_sparse_warp:
                        log_info("Ignoring sparse warp error: {}".format(err))
                        continue
                    else:
                        raise
                except tf.errors.OutOfRangeError:
                    break

                if problem_files.size > 0:
                    problem_files = [f.decode('utf8') for f in problem_files[..., 0]]
                    log_error('The following files caused an infinite (or NaN) '
                              'loss: {}'.format(','.join(problem_files)))

                total_loss += batch_loss
                step_count += 1

                pbar.update(step_count)

                step_summary_writer.add_summary(step_summary, current_step)

                if is_train and FLAGS.checkpoint_secs > 0 and time.time() - checkpoint_time > FLAGS.checkpoint_secs:
                    checkpoint_saver.save(session, checkpoint_path, global_step=current_step)
                    checkpoint_time = time.time()

            pbar.finish()
            mean_loss = total_loss / step_count if step_count > 0 else 0.0
            return mean_loss, step_count

        log_info('STARTING Optimization')
        train_start_time = datetime.utcnow()
        best_dev_loss = float('inf')
        dev_losses = []
        try:
            for epoch in range(FLAGS.epochs):
                # Training
                log_progress('Training epoch %d...' % epoch)
                train_loss, _ = run_set('train', epoch, train_init_op)
                log_progress('Finished training epoch %d - loss: %f' % (epoch, train_loss))
                checkpoint_saver.save(session, checkpoint_path, global_step=global_step)

                if FLAGS.dev_files:
                    # Validation
                    dev_loss = 0.0
                    total_steps = 0
                    for csv, init_op in zip(dev_csvs, dev_init_ops):
                        log_progress('Validating epoch %d on %s...' % (epoch, csv))
                        set_loss, steps = run_set('dev', epoch, init_op, dataset=csv)
                        dev_loss += set_loss * steps
                        total_steps += steps
                        log_progress('Finished validating epoch %d on %s - loss: %f' % (epoch, csv, set_loss))
                    dev_loss = dev_loss / total_steps

                    dev_losses.append(dev_loss)

                    if dev_loss < best_dev_loss:
                        best_dev_loss = dev_loss
                        save_path = best_dev_saver.save(session, best_dev_path, global_step=global_step, latest_filename='best_dev_checkpoint')
                        log_info("Saved new best validating model with loss %f to: %s" % (best_dev_loss, save_path))

                    # Early stopping
                    if FLAGS.early_stop and len(dev_losses) >= FLAGS.es_steps:
                        mean_loss = np.mean(dev_losses[-FLAGS.es_steps:-1])
                        std_loss = np.std(dev_losses[-FLAGS.es_steps:-1])
                        dev_losses = dev_losses[-FLAGS.es_steps:]
                        log_debug('Checking for early stopping (last %d steps) validation loss: '
                                  '%f, with standard deviation: %f and mean: %f' %
                                  (FLAGS.es_steps, dev_losses[-1], std_loss, mean_loss))
                        if dev_losses[-1] > np.max(dev_losses[:-1]) or \
                           (abs(dev_losses[-1] - mean_loss) < FLAGS.es_mean_th and std_loss < FLAGS.es_std_th):
                            log_info('Early stop triggered as (for last %d steps) validation loss:'
                                     ' %f with standard deviation: %f and mean: %f' %
                                     (FLAGS.es_steps, dev_losses[-1], std_loss, mean_loss))
                            break
        except KeyboardInterrupt:
            pass
        log_info('FINISHED optimization in {}'.format(datetime.utcnow() - train_start_time))
    log_debug('Session closed.')
Ejemplo n.º 3
0
    # Checkpointing
    checkpoint_saver = tfv1.train.Saver(max_to_keep=FLAGS.max_to_keep)
    checkpoint_path = os.path.join(FLAGS.checkpoint_dir, 'train')
    checkpoint_filename = 'checkpoint'

    best_dev_saver = tfv1.train.Saver(max_to_keep=1)
    best_dev_path = os.path.join(FLAGS.checkpoint_dir, 'best_dev')
    best_dev_filename = 'best_dev_checkpoint'

    # Save flags next to checkpoints
    os.makedirs(FLAGS.checkpoint_dir, exist_ok=True)

    flags_file = os.path.join(FLAGS.checkpoint_dir, 'flags.txt')
    with open(flags_file, 'w') as fout:
        fout.write(FLAGS.flags_into_string())

    initializer = tfv1.global_variables_initializer()

    with tfv1.Session(config=Config.session_config) as session:
        log_debug('Session opened.')

        # Loading or initializing
        loaded = False

        # Initialize training from a CuDNN RNN checkpoint
        if FLAGS.cudnn_checkpoint:
            if FLAGS.use_cudnn_rnn:
                log_error('Trying to use --cudnn_checkpoint but --use_cudnn_rnn '
                          'was specified. The --cudnn_checkpoint flag is only '
                          'needed when converting a CuDNN RNN checkpoint to '