Ejemplo n.º 1
0
  def update_stance(self, translation_vel, rotate_vel, dt):
    """
    TODO: Document
    """

    # stance_vel_xyz = translation_vel + rotate_vel.cross(cmd_stance_xyz)
    self._stance_vel_xyz[:] = translation_vel + np.cross(rotate_vel, self._cmd_stance_xyz)

    # FIXME: Cut down on allocations here
    self._cmd_stance_xyz += translation_vel * dt
    self._cmd_stance_xyz[:] = rotate_z(rotate_vel[2] * dt) @ rotate_y(rotate_vel[1] * dt) @ rotate_x(rotate_vel[0] * dt) @ self._cmd_stance_xyz

    self._kinematics.get_end_effector(self._feedback_view.position, self._ee_frame)
    np.copyto(self._fbk_stance_xyz, self._ee_frame[0:3, 3])

    # Update home stance to match the current z height
    self._level_home_stance_xyz[2] += translation_vel[2] * dt
    self._home_stance_xyz[:] = rotate_x(0.2 * translation_vel[1]) @ rotate_y(-0.2 * translation_vel[0]) @ self._level_home_stance_xyz
Ejemplo n.º 2
0
    def __init__(self, val_lock, name, group_indices):
        assert name == 'Left' or name == 'Right'
        super(Leg, self).__init__(val_lock, group_indices, name)

        self._name = name
        base_frame = np.identity(4, dtype=np.float64)

        hip_t = np.identity(4, dtype=np.float64)
        hip_t[0:3, 0:3] = math_utils.rotate_x(np.pi * 0.5)
        hip_t[0:3, 3] = [0.0, 0.0225, 0.055]
        self._hip_t = hip_t

        kin = self._robot
        kin.add_actuator('X5-9')
        kin.add_link('X5', extension=0.375, twist=np.pi)
        kin.add_actuator('X5-4')
        kin.add_link('X5', extension=0.325, twist=np.pi)

        home_knee_angle = np.deg2rad(130)
        home_hip_angle = (np.pi + home_knee_angle) * 0.5

        if name == 'Left':
            self._direction = 1.0
            home_angles = np.array([home_hip_angle, home_knee_angle],
                                   dtype=np.float64)
            base_frame[0:3, 3] = [0.0, 0.15, 0.0]
            base_frame[0:3, 0:3] = math_utils.rotate_x(np.pi * -0.5)
        else:
            self._direction = -1.0
            home_angles = np.array([-home_hip_angle, -home_knee_angle],
                                   dtype=np.float64)
            base_frame[0:3, 3] = [0.0, -0.15, 0.0]
            base_frame[0:3, 0:3] = math_utils.rotate_x(np.pi * 0.5)

        kin.base_frame = base_frame
        self.home_angles = home_angles
        masses = kin.masses
        self._set_mass(np.sum(masses))
        self._set_masses(masses)

        # ----------------------
        # Populate cached fields
        output_frame_count = kin.get_frame_count('output')
        com_frame_count = kin.get_frame_count('CoM')

        self._current_xyz = np.asmatrix(
            np.zeros((3, com_frame_count), dtype=np.float64))

        for i in range(output_frame_count):
            self._current_fk.append(
                np.asmatrix(np.zeros((4, 4), dtype=np.float64)))

        for i in range(com_frame_count):
            self._current_coms.append(
                np.asmatrix(np.zeros((4, 4), dtype=np.float64)))

        # Calculate home FK
        self._hip_angle = home_hip_angle
        self._knee_angle = home_knee_angle
        self._knee_velocity = 0.0
        self._user_commanded_knee_velocity = 0.0
        self._knee_angle_max = 2.65
        self._knee_angle_min = 0.65
        self._e_term = np.asmatrix(np.empty((6, 1), dtype=np.float64))

        # Additionally calculate commanded endeffector position
        self._current_cmd_tip_fk = np.asmatrix(
            np.zeros((4, 4), dtype=np.float64))
Ejemplo n.º 3
0
    def _calculate_lean_angle(self):
        """
    The CoM of all individual bodies and pose estimate have been updated at this point
    """
        rpy_modules = self._rpy
        imu_modules = self._imu_modules

        # {roll,pitch}_angle are in radians here
        roll_angle = np.nanmean(rpy_modules[0, imu_modules])
        pitch_angle = np.nanmean(rpy_modules[1, imu_modules])

        # Update roll transform (rotation matrix)
        math_utils.rotate_x(roll_angle, output=self._roll_rot)
        # Update pitch transform (rotation matrix)
        math_utils.rotate_y(pitch_angle, output=self._pitch_rot)

        self._roll_angle = degrees(roll_angle)
        self._pitch_angle = degrees(pitch_angle)

        # Rotate by the pitch angle about the Y axis, followed by
        # rotating by the roll angle about the X axis
        np.matmul(self._pitch_rot, self._roll_rot, out=self._T_pose_rot)

        # rad/s
        self._feedback_lean_angle_velocity = self._pose_gyros_mean[1]

        # Find the mean of the two legs' translation vectors at the endeffector
        # and store it in `self._ground_point`
        np.add(self._left_leg.current_tip_fk[0:3, 3],
               self._right_leg.current_tip_fk[0:3, 3],
               out=self._ground_point)
        self._ground_point *= 0.5

        # Get the vector starting from the "ground point" and ending at the
        # position of the current center of mass, then rotate it according to
        # the current pitch angle of Igor, storing the result in `self._line_com`
        np.subtract(self._com, self._ground_point, out=self._line_com)
        np.dot(self._pitch_rot, self._line_com, out=self._line_com)

        # Get the magnitude of the "line CoM" and store it for later use.
        # This is used to scale parameters in the balance controller.
        self._height_com = np.linalg.norm(self._line_com)

        # Using the line center of mass, find the feedback lean angle
        self._feedback_lean_angle = degrees(
            atan2(self._line_com[0, 0], self._line_com[2, 0]))

        # Update Igor's center of mass by applying the transforms in the following order:
        #  1) pitch rotation
        #  2) roll rotation
        np.dot(self._T_pose_rot, self._com, out=self._com)

        # Copy the pose rotation matrix back into the pose transformation matrix
        self._pose_transform[0:3, 0:3] = self._T_pose_rot

        # Update CoM of legs based on current pose estimate from calculated lean angle
        l_leg_coms = self._left_leg.current_coms
        r_leg_coms = self._right_leg.current_coms
        # Both legs have the same amount of kinematic bodies, so
        # do calculations for both legs in same loop
        for i in range(len(l_leg_coms)):
            leg_com = l_leg_coms[i]
            np.matmul(self._pose_transform, leg_com, out=leg_com)
            leg_com = r_leg_coms[i]
            np.matmul(self._pose_transform, leg_com, out=leg_com)