Ejemplo n.º 1
0
def rotation(phi, psi=None):
    if psi is None:
        c = cos(phi)
        s = sin(phi)
        return Matrix([[c, -s, 0], [s, c, 0], [0, 0, 1]])
    else:
        den = (phi**2 + psi**2)**.5
        phi /= den
        psi /= den
        return Matrix([[phi, -psi, 0], [psi, phi, 0], [0, 0, 1]])
Ejemplo n.º 2
0
def get_link_mat(net):
    """
    L0: L = [I ]
            [L0]
            
    N = L * Nr
    """
    I = Matrix.eye(net.ixids)
    L0 = get_reduced_link_mat(net)
    L = Matrix(pd.concat((I, L0)))
    return L
Ejemplo n.º 3
0
def get_param_elas_mat(net, p=None, normed=False):
    """
    """
    net.update(p=p, t=np.inf)      
    ns = net.namespace.copy()
    ns.update(net.varvals.to_dict())
    if not hasattr(net, 'Ep_str'):
        Ep_code = get_Ep_str(net)[1]
    else:
        Ep_code = net.Ep_code
    Ep = Matrix(eval(Ep_code, ns), net.vids, net.pids)
    if normed:
        return Ep.normalize(net.v, net.p)
    else:
        return Ep
Ejemplo n.º 4
0
def get_param_elas_mat(net, p=None, normed=False):
    """
    """
    net.update(p=p, t=np.inf)      
    ns = net.namespace.copy()
    ns.update(net.varvals.to_dict())
    if not hasattr(net, 'Ep_str'):
        Ep_code = get_Ep_str(net)[1]
    else:
        Ep_code = net.Ep_code
    Ep = Matrix(eval(Ep_code, ns), net.rateids, net.pids)
    if normed:
        return Ep.normalize(net.J, net.p)
    else:
        return Ep
Ejemplo n.º 5
0
def get_concn_elas_mat(net, p=None, normed=False):
    """
    FIXME ***: compile or generate dynamic Python functions
    """
    net.update(p=p, t=np.inf)
    ns = net.namespace.copy()  # without copy, the namespace is contaminated
    ns.update(net.vals.to_dict())
    if not hasattr(net, 'Ex_code'):
        Ex_code = get_Ex_str(net)[1]
    else:
        Ex_code = net.Ex_code
    Es = Matrix(eval(Ex_code, ns), net.rateids, net.xids)
    if normed:
        return Es.normalize(net.J, net.s)
    else:
        return Es
Ejemplo n.º 6
0
 def _calc_current_vertices(self):
     x, y, kx, ky = self.x_p, self.y_p, self.kx, self.ky
     c = cos(self.alpha)
     s = sin(self.alpha)
     self.vertices_current = Matrix([[kx * c, -ky * s, x],
                                     [kx * s, ky * c, y], [0, 0, 1]
                                     ]) * self.vertices_initial
Ejemplo n.º 7
0
 def Df(p=None, to_mat=False):
     if p is None:
         p = p0
     jac = _Df(p)
     if to_mat:
         jac = Matrix(jac, index=yids, columns=pids) 
     return jac
Ejemplo n.º 8
0
 def _calc_matrices(self):
     kv = self.N.normalised()
     iv = self.Top.cross_product(self.N).normalised()
     jv = kv.cross_product(iv)
     self.__S_w_to_v = Matrix([
         [iv.x, iv.y, iv.z, -iv.dot(self.Ov)],
         [jv.x, jv.y, jv.z, -jv.dot(self.Ov)],
         [kv.x, kv.y, kv.z, -kv.dot(self.Ov)],
         [0,       0,    0,                1]
     ])
     self.__S_v_to_p = Matrix([
         [1, 0,           0, 0],
         [0, 1,           0, 0],
         [0, 0, -1 / self.D, 1]
     ])
     self.__S_w_to_p = self.__S_v_to_p * self.__S_w_to_v
Ejemplo n.º 9
0
    def mapping(self, raw_train_ratings):
        uid_dict = {}
        iid_dict = {}
        current_u_index = 0
        current_i_index = 0

        row = []
        col = []
        data = []
        for urid, irid, r, timestamp in raw_train_ratings:
            try:
                uid = uid_dict[urid]
            except KeyError:
                uid = current_u_index
                uid_dict[urid] = current_u_index
                current_u_index += 1
            try:
                iid = iid_dict[irid]
            except KeyError:
                iid = current_i_index
                iid_dict[irid] = current_i_index
                current_i_index += 1

            row.append(uid)
            col.append(iid)
            data.append(r)

        sparse_matrix = csr_matrix((data, (row, col)))

        return Matrix(sparse_matrix, uid_dict, iid_dict)
Ejemplo n.º 10
0
def get_concn_elas_mat(net, p=None, normed=False):
    """
    FIXME ***: compile or generate dynamic Python functions
    """
    net.update(p=p, t=np.inf)
    ns = net.namespace.copy()  # without copy, the namespace is contaminated
    ns.update(net.varvals.to_dict())
    if not hasattr(net, 'Ex_code'):
        Ex_code = get_Ex_str(net)[1]
    else:
        Ex_code = net.Ex_code
    Es = Matrix(eval(Ex_code, ns), net.vids, net.xids)
    if normed:
        return Es.normalize(net.v, net.s)
    else:
        return Es
Ejemplo n.º 11
0
def jws2mat(filepath, name=None):
    """Parse the output file of JWS online.
    
    Input:
        filepath:
        name: str; 'Cs', 'nCs', 'CJ', 'nCJ'
    """
    fh = open(filepath)
    lines = fh.readlines()
    fh.close()
    if name is None:
        name = filepath.split('/')[-1].split('_')[0]
    
    if name == 'nEs':
        add_prefix_row = lambda varid: 'log_v_' + varid
        add_prefix_col = lambda varid: 'log_' + varid
    elif name == 'nCs':
        add_prefix_row = lambda varid: 'log_' + varid
        add_prefix_col = lambda varid: 'log_v_' + varid
    else:
        add_prefix_row = lambda varid: varid
        add_prefix_col = lambda varid: varid

    colvarids = [add_prefix_col(s.strip()) for s in lines[0].split(',')[1:]]
    rowvarids = []
    mat = []
    for line in lines[1:]:
        rowvarids.append(add_prefix_row(line.split(',')[0]))
        mat.append([float(s) for s in line.split(',')[1:]])
    mat = Matrix(mat, rowvarids, colvarids)
    return mat
Ejemplo n.º 12
0
def copasi2mats(filepath, name=None):
    """Parse the output file of Copasi. 
    
    Input:
        filepath: 
        name: 
    """
    _trim0 = lambda s: s.replace('(','').replace(')','')
    _trim = lambda s: _trim0(s) if isinstance(s,str) else [_trim0(_) for _ in s]
    fh = open(filepath)
    lines = fh.readlines()
    fh.close()
    parts = ''.join(lines).split('\n\n')[2:]
    name2mat = OD()
    try:
        for part in parts:
            lines_part = part.split('\n')
            lines_mat = lines_part[4:]
            colvarids = _trim(lines_mat[0].split('\t')[1:])
            mat = []
            rowvarids = []
            for line in lines_mat[1:]:
                rowvarids.append(_trim(line.split('\t')[0]))
                mat.append([float(s) for s in line.split('\t')[1:]])
            name2mat[lines_part[1]] = Matrix(mat, rowvarids, colvarids)
    except:
        pass
    if name:
        return name2mat[name]
    else:
        return name2mat
Ejemplo n.º 13
0
 def Dr(p=None, to_mat=False):
     if p is None:
         p = pred.p0
     jac_f = pred.Df(p)
     jac_r = -(jac_f.T / sigma).T  ## corrected
     if to_mat:
         jac_r = Matrix(jac_r, pred.yids, pred.pids)
     return jac_r
Ejemplo n.º 14
0
    def _get_smat(p, scheme, cutoff_singval, stepscale, temperature):
        if scheme == 'jtj':
            jac = Dfunc(p)
            jtj = jac.T * jac
            smat = _hess2smat(jtj, cutoff_singval, stepscale, temperature)
        if scheme == 'eye':
            smat = Matrix.eye(func.pids) * stepscale

        return smat
Ejemplo n.º 15
0
    def _get_smat(p, scheme, cutoff_singval, stepscale, temperature):
        if scheme == 'jtj':
            jac = Dfunc(p)
            jtj = np.dot(jac.T, jac)
            smat = _hess2smat(jtj, cutoff_singval, stepscale, temperature)
        if scheme == 'eye':
            smat = Matrix.eye(func.pids) * stepscale

        return smat
Ejemplo n.º 16
0
def get_flux_ctrl_mat(net, p=None, normed=False):
    """
    """
    net.update(p=p, t=np.inf)
    I, Es, Cs = Matrix.eye(net.Jids, net.vids), net.Es, net.Cs
    CJ = I + (Es * Cs).ch_rowvarids(net.Jids)
    if normed:
        return CJ.normalize(net.J, net.v)
    else:
        return CJ
Ejemplo n.º 17
0
def get_flux_ctrl_mat(net, p=None, normed=False):
    """
    """
    net.update(p=p, t=np.inf)
    I, Es, Cs = Matrix.eye(net.fluxids, net.rateids), net.Es, net.Cs
    CJ = I + (Es * Cs).ch_rowvarids(net.fluxids)
    if normed:
        return CJ.normalize(net.J, net.v)
    else:
        return CJ
Ejemplo n.º 18
0
def get_reduced_link_mat(net, to_mat=True):
    """
    L0: L = [I ]
            [L0]
    """
    if len(net.ixids) == len(net.xids):
        L0 = Matrix(columns=net.ixids)
    else:
        L0 = -net.P.loc[:, net.ixids].ch_rowvarids(net.dxids)
    if not to_mat:
        L0 = L0.values
    return L0
Ejemplo n.º 19
0
def get_link_mat(net):
    """
    L0: L = [I ]
            [L0]
            
    N = L * Nr
    """
    I = Matrix.eye(net.ixids)
    if len(net.ixids) == len(net.xids):
        L = I
    else:
        L0 = -net.P.loc[:, net.ixids].ch_rowvarids(net.dxids)
        L = Matrix(pd.concat((I, L0)))
    return L
Ejemplo n.º 20
0
def fit_lm_scipy(res, p0=None, in_logp=True, **kwargs):
    """
    """

    if p0 is None:
        p0 = res.p0
    else:
        p0 = Series(p0, res.pids)

    if in_logp:
        res = res.get_in_logp()
        p0 = p0.log()
    else:
        res = res

    kwargs = butil.get_submapping(kwargs,
                                  keys=[
                                      'full_output', 'col_deriv', 'ftol',
                                      'xtol', 'gtol', 'maxfev', 'epsfcn',
                                      'factor', 'diag'
                                  ])
    kwargs_ls = kwargs.copy()
    kwargs_ls['full_output'] = True

    p, cov, infodict, mesg, ier = leastsq(res, p0, Dfun=res.Dr, **kwargs_ls)

    if in_logp:
        p = np.exp(p)
        # cov = ... FIXME ***

    r = Series(infodict['fvec'], res.rids)
    cost = _r2cost(r)
    covmat = Matrix(cov, res.pids, res.pids)
    nfcall = infodict['nfev']

    fit = Fit(cost=cost,
              p=p,
              pids=res.pids,
              covmat=covmat,
              nfcall=nfcall,
              r=r,
              message=mesg,
              ier=ier)

    return fit
Ejemplo n.º 21
0
def get_jac_mat(net, p=None, x=None):
    """
    Return the jacobian matrix (M) of the network, which, _in the MCA context_,
    is the jacobian of the independent vector field dxi/dt = Nr * v(xi,xd,p)
    (so that M is invertible).
    """
    if x is None:
        net.update(p=p, t=np.inf)
        L, Es, Nr = net.L, net.Es, net.Nr.ch_colvarids(net.vids)
        M = Nr * Es * L
    else:
        if p is not None:
            net.update(p=p)
        Exstr = get_Ex_str(net)[0]
        x = Series(x, net.xids)
        Ex = Matrix(eval(Exstr, dict(net.varvals.items()+x.items())),
                    net.rxnids, net.xids)
        M = net.N * Ex
    return M
Ejemplo n.º 22
0
def get_RJ(net, Nr, L, p=None, to_mat=False, **kwargs_ss):
    if p is not None:
        net.update_optimizable_vars(p)

    if not hasattr(net, 'Ep_code'):
        net.get_Ep_str()
        net.get_Ex_str()

    set_ss(net, **kwargs_ss)  # also sets net.x = s (crucial)

    ns = net.namespace.copy()
    ns.update(net.varvals.to_dict())
    Ep = eval(net.Ep_code, ns)
    Es = eval(net.Ex_code, ns)
    jac = np.dot(np.dot(Nr, Es), L)
    Cs = -np.dot(np.dot(L, np.linalg.inv(jac)), Nr)
    CJ = np.eye(len(net.rxns)) + np.dot(Es, Cs)
    RJ = np.dot(CJ, Ep)
    if to_mat:
        RJ = Matrix(RJ, net.Jids, net.pids)
    return RJ
Ejemplo n.º 23
0
    def mapping(train_ratings):
        uid_dict = {}  # {"编号":"下标(编号-1)"}
        iid_dict = {}
        row = []  # user 下标
        col = []  # item 下标
        data = []

        for uid, iid, r, timestamp in train_ratings:
            try:
                uid_index = uid_dict[uid]
            except KeyError:
                uid_index = uid - 1
                uid_dict[uid] = uid_index
            try:
                iid_index = iid_dict[iid]
            except KeyError:
                iid_index = iid - 1
                iid_dict[iid] = iid_index
            row.append(uid_index)
            col.append(iid_index)
            data.append(r)
        sparse_matrix = csr_matrix((data, (row, col)))

        return Matrix(sparse_matrix, uid_dict, iid_dict)
Ejemplo n.º 24
0
def rotation_y(phi):
    c = cos(phi)
    s = sin(phi)
    return Matrix([[c, 0, s, 0], [0, 1, 0, 0], [-s, 0, c, 0], [0, 0, 0, 1]])
Ejemplo n.º 25
0
            X[k] = np.linalg.solve(np.dot(Y_u.T, Y_u) + reg_I, np.dot(Y.T, r))
            # X[k] = np.linalg.solve(np.dot(Y.T, Y) + reg_I, np.dot(Y.T, r))

    def _prepare(self):
        self.user_num = self.train_dataset.matrix.shape[0]
        self.item_num = self.train_dataset.matrix.shape[1]
        self.X = np.random.normal(size=(self.user_num, self.n_factors))
        self.Y = np.random.normal(size=(self.item_num, self.n_factors))

    def _iteration(self):
        self.alternative(self.X, self.Y, True)
        self.alternative(self.Y, self.X, False)

    def _pred(self):
        return np.dot(self.X, self.Y.T)

    def predict(self, u, i):
        est = np.dot(self.X[u, :], self.Y[i, :])
        return est


if __name__ == '__main__':
    from util.matrix import Matrix

    data = sparse.csc_matrix(np.random.randint(0, 5, (5, 5)))
    print(data)
    ex = ExplicitALS()
    ex.train(Matrix(data))
    print(data.A)
    print(ex._pred())
Ejemplo n.º 26
0
    def fit_lm_custom(self, p0=None, in_logp=True,
                   maxnstep=1000, ret_full=False, ret_steps=False, disp=False, 
                   lamb0=0.001, tol=1e-6, k_up=10, k_down=10, ndone=5, **kwargs):
        """
        
        Input:
            k_up and k_down: parameters used in tuning lamb at each step;
                in the traditional scheme, typically 
                    k_up = k_down = 10;
                in the delayed gratification scheme, typically 
                    k_up = 2, k_down = 10 (see, [1])
        
        grad C = Jt * r
        J = U * S * Vt
         ______     ______  
        |      |   |      |  ______   ______
        |      |   |      | |      | |      |
        |   J  | = |   U  | |   S  | |  Vt  |
        |      |   |      | |______| |______|
        |______|   |______|
        
        Vt * V = V * Vt = I
        Ut* U = I =/= U * Ut
        JtJ = (V * S * Ut) * (U * S * Vt) = V * S^2 * Vt
        
         ______     ____________   ______
        |      |   |            | |      |  ______
        |      |   |            | |      | |      |
        |      | = |            | |      | |      |
        |      |   |            | |      | |______|
        |______|   |____________| |______|
        
        
        
        Gradient Descent step: 
            delta p = - grad C   
            
        Gauss Newton step:
            delta p = - (JtJ).I * grad C

        Levenberg Marquardt step:
            delta p = - (JtJ + lamb * I).inv * grad C
                    = - (V * (S^2 + lamb * I) * Vt).inv * Jt * r
                    = - (V * (S^2 + lamb * I).inv * Vt) * V * S * Ut * r
                    = - V * (S^2 + lamb * I).inv * S * Ut * r
        
        References:
        [1] Transtrum
        [2] Numerical Recipes
        """
        if p0 is None:
            p0 = self.p0
        else:
            p0 = Series(p0, self.pids)

        if in_logp:
            res = self.get_in_logp()
            p0 = p0.log()
        else:
            res = self
        
        if maxnstep is None :
            maxnstep = len(res.pids) * 100

        nstep = 0
        nfcall = 0
        nDfcall = 0  

        p = p0
        lamb = lamb0
        done = 0
        accept = True
        convergence = False
        
        r = res(p0)
        cost = _r2cost(r)        
        nfcall += 1

        if ret_steps:
            ps = DF([p0], columns=res.pids)
            deltaps = DF(columns=res.pids)
            costs = Series([cost], name='cost')
            lambs = Series([lamb], name='lamb')
            ps.index.name = 'step'
            costs.index.name = 'step'
            lambs.index.name = 'step'
        
        while not convergence and nstep < maxnstep:
            
            if accept:
                jac = res.Dr(p)
                U, S, Vt = jac.svd(to_mat=True)
                nDfcall += 1            
            
            
            deltap = - Vt.T * (S**2 + lamb * Matrix.eye(res.pids)).I * S * U.T * r
            deltap = deltap[0]  # convert 1-d DF to series
            p2 = p + deltap
            nstep += 1
            
            r2 = res(p2)
            cost2 = _r2cost(r2)
            nfcall += 1
            
            if np.abs(cost - cost2) < max(tol, cost * tol):
                done += 1
                
            if cost2 < cost:
                accept = True
                lamb /= k_down
                p = p2
                r = r2
                cost = cost2    
            else:
                accept = False
                lamb *= k_up
            
            if ret_steps:
                ps.loc[ps.nrow] = p
                deltaps.loc[deltaps.nrow] = deltap
                costs.loc[costs.size] = cost
                lambs.loc[lambs.size] = lamb
                
            if done == ndone:
                convergence = True
                # lamb = 0
                
        if in_logp:
            p = p.exp()
            if ret_steps:
                ps = np.exp(ps)
                ps.columns = self.pids
                
            
        out = Series(OD([('p', p), ('cost', cost)]))
        if ret_full:
            out.nfcall = nfcall
            out.nDfcall = nDfcall
            out.convergence = convergence
            out.nstep = nstep
        if ret_steps:
            out.ps = ps
            out.deltaps = deltaps
            out.costs = costs
            out.lambs = lambs

        return out
Ejemplo n.º 27
0
    s = sin(phi)
    return Matrix([[1, 0, 0, 0], [0, c, -s, 0], [0, s, c, 0], [0, 0, 0, 1]])


def rotation_y(phi):
    c = cos(phi)
    s = sin(phi)
    return Matrix([[c, 0, s, 0], [0, 1, 0, 0], [-s, 0, c, 0], [0, 0, 0, 1]])


def rotation_z(phi):
    c = cos(phi)
    s = sin(phi)
    return Matrix([[c, -s, 0, 0], [s, c, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])


def scaling(kx, ky=None, kz=None):
    if ky is None and kz is None:
        ky = kz = kx
    return Matrix([[kx, 0, 0, 0], [0, ky, 0, 0], [0, 0, kz, 0], [0, 0, 0, 1]])


mirroring_x = Matrix([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0,
                                                                   1]])

mirroring_y = Matrix([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, -1, 0], [0, 0, 0,
                                                                   1]])

mirroring_z = Matrix([[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 1, 0], [0, 0, 0,
                                                                   1]])
Ejemplo n.º 28
0
 def _calc_current_vertices(self):
     c, s = self.cos, self.sin
     self.vertices_current = Matrix([[c, -s, self.x], [s, c, self.y],
                                     [0, 0, 1]]) * self.vertices_initial
Ejemplo n.º 29
0
def get_stoich_mat(net=None,
                   rxnid2stoich=None,
                   only_dynvar=True,
                   integerize=False,
                   to_mat=True):
    """Return the stoichiometry matrix (N) of the given network or 
    dict rxnid2stoich. Rows correspond to species, and columns correspond to 
    reactions.
    
    Input:
        rxnid2stoich: eg, {'R1':{'A1:1}, 'R2':{'A1':1}}; 
                      net & rxnid2stoich: one and only one should be given
        only_dynvar: if True, use *dynamic* species as rows (keep out 
                        constant/buffered species);
                     if False, use species as row
        integerize: if True, make all stoichcoefs integers
    """
    if net:
        try:
            ## assume network structure has not changed and
            # precalculated N is up-to-date
            return net.stoich_mat
        except (AttributeError, ValueError):
            if only_dynvar:
                rowvarids = net.xids
            else:
                rowvarids = net.spids
            N = Matrix(np.zeros((len(rowvarids), len(net.rxnids))), rowvarids,
                       net.rxnids)
            for spid in rowvarids:
                for rxnid in net.rxnids:
                    try:
                        stoichcoef = net.rxns[rxnid].stoichiometry[spid]
                        # sometimes stoichcoefs are strings
                        if isinstance(stoichcoef, str):
                            stoichcoef = net.evaluate_expr(stoichcoef)
                        N.loc[spid, rxnid] = stoichcoef
                    except KeyError:
                        pass  # mat[i,j] remains zero

    if rxnid2stoich:
        rxnids = rxnid2stoich.keys()
        spids = []
        for stoich in rxnid2stoich.values():
            for spid, stoichcoef in stoich.items():
                if int(stoichcoef) != 0 and spid not in spids:
                    spids.append(spid)
        N = Matrix(np.zeros((len(spids), len(rxnids))), spids, rxnids)
        for spid in spids:
            for rxnid in rxnids:
                try:
                    N.loc[spid, rxnid] = rxnid2stoich[rxnid][spid]
                except KeyError:
                    pass  # mat[i,j] remains zero

    # make all stoichcoefs integers by first expressing them in fractions
    if integerize:
        for i in range(N.ncol):
            col = N.iloc[:, i]
            nonzeros = [num for num in butil.flatten(col) if num]
            denoms = [
                fractions.Fraction(nonzero).limit_denominator().denominator
                for nonzero in nonzeros
            ]
            denom = np.prod(list(set(denoms)))
            N.iloc[:, i] = col * denom

    if net is not None:
        net.stoich_mat = N

    if not to_mat:
        N = N.values
    return N
Ejemplo n.º 30
0
def rotation_z(phi):
    c = cos(phi)
    s = sin(phi)
    return Matrix([[c, -s, 0, 0], [s, c, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]])
Ejemplo n.º 31
0
def get_ss_flux_mat(net, integerize=True, to_mat=True):
    """
    Input:
        net & stoichmat: one and only one of them should be given
        integerize: does not work very well so far: eg, for N = 
        
              RBCO  PGAK  GAPDH  REGN  RK  PGAT  GAPT
        RuBP    -1     0      0     0   1     0     0
        PGA      2    -1      0     0   0    -1     0
        BPGA     0     1     -1     0   0     0     0
        GAP      0     0      1    -5   0     0    -1
        Ru5P     0     0      0     3  -1     0     0, 
        
        or: N = array([[-1.,  0.,  0.,  0.,  1.,  0.,  0.],
                       [ 2., -1.,  0.,  0.,  0., -1.,  0.],
                       [ 0.,  1., -1.,  0.,  0.,  0.,  0.],
                       [ 0.,  0.,  1., -5.,  0.,  0., -1.],
                       [ 0.,  0.,  0.,  3., -1.,  0.,  0.]])
        K should be:
        RBCO    3   0
        PGAK    0   1
        GAPDH   0   1
        REGN    1   0
        RK      3   0
        PGAT    6  -1
        GAPT   -5   1
        
        But this code, using "integerize" gives: 
        RBCO    3   0
        PGAK    0   1
        GAPDH   0   1
        REGN    0   0
        RK      3   0
        PGAT    6  -1
        GAPT   -5   1

        For this reason, "integerize" should not be used for now unless debugged 
        and more testings have been done, and integer N is required for now.
                      
    """
    try:
        K = net.ss_flux_mat
        N = net.N
        if (K.ncol == 0 and N.rank == N.ncol) or\
            ((N*K).is_zero() and K.ncol + N.rank == N.ncol):
            return K
        else:
            raise ValueError("")
    except (AttributeError, ValueError):
        ## The following codes compute the INTEGER basis of right null space
        ## of stoichiometry matrix.

        ## convert the matrix into a string recognizable by sage
        N = net.N
        N_int = Matrix.astype(N, np.int)

        if np.allclose(N, N_int):
            N = N_int
        else:
            raise ValueError("N is not in integers.")

        if N.rank == N.ncol:
            K = Matrix(None, net.rxnids)
        else:
            matstr = re.sub('\s|[a-z]|\(|\)', '', np.matrix(N).__repr__())

            ## write a (sage) python script ".tmp_sage.py"
            # for more info of the sage commands:
            # http://www.sagemath.org/doc/faq/faq-usage.html#how-do-i
            # -import-sage-into-a-python-script
            # http://www.sagemath.org/doc/tutorial/tour_linalg.html
            f = open('.tmp_sage.py', 'w')
            f.write('from sage.all import *\n\n')
            if np.float in N.dtypes.values:
                f.write('A = matrix(RR, %s)\n\n' % matstr)  # real field
            else:
                f.write('A = matrix(ZZ, %s)\n\n' % matstr)  # integer field
            f.write('print kernel(A.transpose())'
                    )  # return right nullspace vectors
            f.close()

            ## call sage and run .tmp_sage.py
            out = subprocess.Popen(['sage', '-python', '.tmp_sage.py'],
                                   stdout=subprocess.PIPE)

            ## process the output from sage
            vecstrs = out.communicate()[0].split('\n')[2:-1]
            #vecs = [eval(re.sub('(?<=\d)\s*(?=\d|-)', ',', vec))
            #        for vec in vecstrs]
            vecs = [
                filter(None,
                       vec.strip('[]').split(' ')) for vec in vecstrs
            ]
            try:
                vecs = [[int(elem) for elem in vec if elem] for vec in vecs]
            except ValueError:
                vecs = [[float(elem) for elem in vec if elem] for vec in vecs]
            fdids = ['J%d' % idx for idx in range(1, len(vecs) + 1)]
            K = Matrix(np.transpose(vecs), net.rxnids, fdids)

        if integerize:  # buggy, see the docstring FIXME **
            for i in range(K.ncol):
                col = K.iloc[:, i]
                nonzeros = [num for num in butil.flatten(col) if num]
                denoms = [
                    fractions.Fraction(nonzero).limit_denominator(
                        1000).denominator for nonzero in nonzeros
                ]
                denom = np.prod(list(set(denoms)))
                K.iloc[:, i] = np.asarray(col * denom, dtype='int')

        assert (N*K).is_zero(), "The calculated K is not really in"\
        "the nullspace of N!"

        net.ss_flux_mat = K

        if not to_mat:
            K = K.values

        return K
Ejemplo n.º 32
0
def rotation_x(phi):
    c = cos(phi)
    s = sin(phi)
    return Matrix([[1, 0, 0, 0], [0, c, -s, 0], [0, s, c, 0], [0, 0, 0, 1]])
Ejemplo n.º 33
0
def translation(x, y, z):
    return Matrix([[1, 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]])
Ejemplo n.º 34
0
def get_stoich_mat(net=None, rxnid2stoich=None, only_dynvar=True, 
                   integerize=True):
    """Return the stoichiometry matrix (N) of the given network or 
    dict rxnid2stoich. Rows correspond to species, and columns correspond to 
    reactions.
    
    Input:
        rxnid2stoich: eg, {'R1':{'A1:1}, 'R2':{'A1':1}}; 
                      net & rxnid2stoich: one and only one should be given
        only_dynvar: if True, use *dynamic* species as rows (keep out 
                        constant/buffered species);
                     if False, use species as row
        integerize: if True, make all stoichcoefs integers
    """
    if net:
        try:
            N = net.stoich_mat
            
            ## need to check what structures are examined... FIXME
            if net._get_structure() == net._last_structure:
                return N
            else:
                net.compile()  # it does the assignment net._last_structure = net._get_structure()
                raise ValueError("Net's structure has been changed and\
                                  N potentially outdated.")
        except (AttributeError, ValueError):
            if only_dynvar:
                rowvarids = net.xids
            else:
                rowvarids = net.spids
            N = Matrix(np.zeros((len(rowvarids), len(net.rxnids))),
                       rowvarids, net.rxnids)
            for spid in rowvarids:
                for rxnid in net.rxnids:
                    try:
                        stoichcoef = net.rxns[rxnid].stoichiometry[spid]
                        # sometimes stoichcoefs are strings
                        if isinstance(stoichcoef, str):
                            stoichcoef = net.evaluate_expr(stoichcoef)
                        N.loc[spid, rxnid] = stoichcoef
                    except KeyError:
                        pass  # mat[i,j] remains zero

    if rxnid2stoich:
        rxnids = rxnid2stoich.keys()
        spids = []
        for stoich in rxnid2stoich.values():
            for spid, stoichcoef in stoich.items():
                if int(stoichcoef) != 0 and spid not in spids:
                    spids.append(spid)
        N = Matrix(np.zeros((len(spids), len(rxnids))), spids, rxnids)
        for spid in spids:
            for rxnid in rxnids:
                try:
                    N.loc[spid, rxnid] = rxnid2stoich[rxnid][spid]
                except KeyError:
                    pass  # mat[i,j] remains zero
    
    # make all stoichcoefs integers by first expressing them in fractions
    if integerize: 
        for i in range(N.ncol):
            col = N.iloc[:,i]
            nonzeros = [num for num in butil.flatten(col) if num]
            denoms = [fractions.Fraction(str(round(nonzero,2))).denominator 
                      for nonzero in nonzeros]
            denom = np.prod(list(set(denoms)))
            N.iloc[:,i] = col * denom
    
    if net is not None:
        net.stoich_mat = N
    return N
Ejemplo n.º 35
0
def get_pool_mul_mat(net, to_mat=True):
    """
    Return a matrix whose row vectors are multiplicities of dynamic variables
    in conservation pools. 
    Mathematically, the matrix has rows spanning the left null space of the
    stoichiometry matrix of the network.
    
    The function is computationally costly, because it calls *sage* to perform 
    matrix computations over the integer ring. 
    (Note that the matrix is converted to floats before being returned.)
    """
    try:
        P = net.pool_mul_mat
        N = net.N
        if (P.nrow == 0 and N.rank == N.nrow) or\
            ((P*N).is_zero() and P.nrow + N.rank == N.nrow):
            return P
        else:
            raise ValueError("net has P but its N has changed.")
    except (AttributeError, ValueError):
        ## The following codes compute the INTEGER basis of left null space
        #  of stoichiometry matrix.

        ## Convert the matrix into a string recognizable by sage.
        N = net.N
        if N.rank == N.nrow:
            P = Matrix(None, columns=net.xids)
        else:
            matstr = re.sub('\s|[a-z]|\(|\)', '', np.matrix(N).__repr__())

            ## Write a (sage) python script "tmp_sage.py".
            # for more info of the sage commands:
            # http://www.sagemath.org/doc/faq/faq-usage.html#how-do-i
            # -import-sage-into-a-python-script
            # http://www.sagemath.org/doc/tutorial/tour_linalg.html
            f = open('.tmp_sage.py', 'w')
            f.write('from sage.all import *\n\n')
            if np.float in N.dtypes.values:
                f.write('A = matrix(RR, %s)\n\n' % matstr)  # real field
            else:
                f.write('A = matrix(ZZ, %s)\n\n' % matstr)  # integer field
            f.write(
                'print A.kernel()')  # this returns the left nullspace vectors
            f.close()

            ## Call sage and run .tmp_sage.py.
            out = subprocess.Popen(['sage', '-python', '.tmp_sage.py'],
                                   stdout=subprocess.PIPE)

            ## Process the output from sage.
            vecstrs = out.communicate()[0].split('\n')[2:-1]
            vecs = [
                eval(re.sub('(?<=\d)\s+(?=\d|-)', ',', vec)) for vec in vecstrs
            ]
            #poolids = ['Pool%d'%idx for idx in range(1, len(vecs)+1)]
            poolids = net.xids[-len(vecs):][::-1]
            P = Matrix(vecs, poolids, N.rowvarids)
            # Clean things up: so far P can be, eg,
            #        X1  X2  X3  X4
            # Pool1   0   0   1   1  # say, adenonine backbone
            # Pool2   2   1   3   2  # say, phospho group
            # We want it be the following, via Gaussian row reduction:
            #        X1  X2  X3  X4
            # Pool1   2   1   1   0
            # Pool2  -2  -1   0   1
            # so that X3 and X4 as the dependent dynvars can be easily
            # selected and expressed as the linear combinations of
            # independent dynvars
            P = P.ix[:, ::-1].rref().ix[::-1, ::-1]
        net.pool_mul_mat = P

        if not to_mat:
            p = P.values

        return P
Ejemplo n.º 36
0
def scaling(kx, ky=None, kz=None):
    if ky is None and kz is None:
        ky = kz = kx
    return Matrix([[kx, 0, 0, 0], [0, ky, 0, 0], [0, 0, kz, 0], [0, 0, 0, 1]])
Ejemplo n.º 37
0
def fit_lm_custom(
        res,
        p0=None,
        in_logp=True,
        maxnstep=1000,
        disp=False,  #ret_full=False, ret_steps=False, 
        lamb0=1e-3,
        tol=1e-6,
        k_up=10,
        k_down=10,
        ndone=5,
        **kwargs):
    """
    
    Input:
        k_up and k_down: parameters used in tuning lamb at each step;
            in the traditional scheme, typically 
                k_up = k_down = 10;
            in the delayed gratification scheme, typically 
                k_up = 2, k_down = 10 (see, [1])
    
    grad C = Jt * r
    J = U * S * Vt
     ______     ______  
    |      |   |      |  ______   ______
    |      |   |      | |      | |      |
    |   J  | = |   U  | |   S  | |  Vt  |
    |      |   |      | |______| |______|
    |______|   |______|
    
    V.T * V = V * V.T = I
    U.T * U = I =/= U * U.t
    J.T * J = (V * S * U.T) * (U * S * V.T) = V * S^2 * V.T
    
     ______     ____________   ______
    |      |   |            | |      |  ______
    |      |   |            | |      | |      |
    |      | = |            | |      | |      |
    |      |   |            | |      | |______|
    |______|   |____________| |______|
    
    
    
    Gradient-descent step: 
        delta p = - grad C = - J.T * r  
        
    Gauss-Newton step:
        delta p = - (J.T * J).inv * grad C = - (J.T * J).inv * J.T * r

    Levenberg step:
        delta p = - (J.T * J + lamb * I).inv * grad C
                = - (V * (S^2 + lamb * I) * V.T).I * J.T * r
                = - (V * (S^2 + lamb * I).inv * V.T) * V * S * U.T * r
                = - V * (S^2 + lamb * I).inv * S * U.T * r
    
    References:
    [1] Transtrum
    [2] Numerical Recipes
    """
    if p0 is None:
        p0 = res.p0
    else:
        p0 = Series(p0, res.pids)

    if in_logp:
        res = res.get_in_logp()
        p0 = p0.log()
    else:
        res = res

    if maxnstep is None:
        maxnstep = len(res.pids) * 100

    nstep = 0
    nfcall = 0
    nDfcall = 0

    p = p0
    lamb = lamb0
    done = 0
    accept = True
    convergence = False

    r = res(p0)
    cost = _r2cost(r)
    nfcall += 1

    ps = [p0]
    deltaps = []
    costs = [cost]
    lambs = [lamb]

    while not convergence and nstep < maxnstep:

        if accept:
            ## FIXME ***
            jac = res.Dr(p, to_mat=True)
            U, S, Vt = jac.svd(to_mat=True)
            nDfcall += 1

        deltap = -Vt.T * (S**2 + lamb * Matrix.eye(res.pids)).I * S * U.T * r
        deltap = deltap[0]  # convert 1-d DF to series
        p2 = p + deltap
        nstep += 1

        if disp:
            #print nstep
            print deltap.exp()[:10]
            print lamb
            #print p2
            #from util import butil
            #butil.set_global(p=p, deltap=deltap, p2=p2, nstep=nstep)

        r2 = res(p2)
        cost2 = _r2cost(r2)
        nfcall += 1

        if np.abs(cost - cost2) < max(tol, cost * tol):
            done += 1

        if cost2 < cost:
            accept = True
            lamb /= k_down
            p = p2
            r = r2
            cost = cost2
        else:
            accept = False
            lamb *= k_up

        ps.append(p)
        deltaps.append(deltap)
        costs.append(cost)
        lambs.append(lamb)

        if done == ndone:
            convergence = True
            # lamb = 0

    if in_logp:
        ps = np.exp(ps)
        pids = map(lambda pid: pid.lstrip('log_'), res.pids)
    else:
        pids = res.pids

    ## need to calculate cov  FIXME ***

    fit = Fit(costs=costs,
              ps=ps,
              pids=pids,
              lambs=lambs,
              nfcall=nfcall,
              nDfcall=nDfcall,
              convergence=convergence,
              nstep=nstep)
    return fit