def _default_opt(self): self.opt = opt.opt() self.opt.save_dir = 'checkpoints' self.opt.name = 'Facelet' self.opt.lr = 1e-4 self.opt.pretrained = True self.opt.effect = 'facehair'
def __init__(self, opt=opt.opt()): super(Facelet, self).__init__() self._default_opt() self.opt = self.opt.merge_opt(opt) self._define_model() self._define_optimizer() if self.opt.pretrained: state_dict = util.load_from_url(model_urls[self.opt.effect], save_dir=facelet_path) model_dict = self.model.state_dict() model_dict.update(state_dict) self.model.load_state_dict(model_dict)
def __init__(self, model, option=opt.opt()): super(optimizer, self).__init__() self._default_opt() self.opt.merge_opt(option) self._get_model(model) self._get_aux_nets() self._define_optim() # self.writer = curves.writer(log_dir=self.opt.save_dir + '/log') util.mkdir(self.opt.save_dir + '/log') self.writer = tensorboardX.SummaryWriter(log_dir=self.opt.save_dir + '/log') if self.opt.continue_train: self.load()
def _default_opt(self): self.opt = opt.opt() self.opt.save_dir = '/checkpoints/default' self.opt.n_discrim = 5
def _default_opt(self): self.opt = opt.opt() self.opt.continue_train = False self.opt.lr = 1e-3