def show_net_weights(nn): # Visualize the weights of the network W1 = nn.params['W1'] W1 = W1.reshape(32, 32, 3, -1).transpose(3, 0, 1, 2) plt.imshow(visualize_grid(W1, padding=3).astype('uint8')) plt.gca().axis('off') plt.show()
def display(set, i=0): image = np.reshape(set[0][i], (28, 28)) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) imgplot = ax.imshow(image, cmap=mpl.cm.Greys) imgplot.set_interpolation('nearest') plt.show()
def plot_histograms_detailed(df, symbol): daily_returns = compute_daily_returns(df) daily_returns[symbol].hist(bins=20, label=symbol) plt.legend(loc="upper right") mean = daily_returns[symbol].mean() print("mean: \n" + str(mean)) std = daily_returns[symbol].std() print("std: \n" + str(std)) plt.axvline(mean, color='w', linestyle='dashed', linewidth=2) plt.axvline(std, color='r', linestyle='dashed', linewidth=2) plt.axvline(-std, color='r', linestyle='dashed', linewidth=2) plt.show()
def plot(data, labels, net): x_min, x_max = data[:, 0].min() - 0.5, data[:, 0].max() + 0.5 y_min, y_max = data[:, 1].min() - 0.5, data[:, 1].max() + 0.5 h = 0.01 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = net.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.scatter(data[:, 0], data[:, 1], c=labels, s=10, cmap=plt.cm.Spectral) plt.show()
def plot_histograms(df, symbol): daily_returns = compute_daily_returns(df) daily_returns[symbol].hist(bins=20, label=symbol) plt.legend(loc="upper right") plt.show()
X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev = load_data( cifar_dir, num_test=500) # ininialize W W = np.random.randn(3073, 10) * 0.0001 # test loss loss, grad = softmax_loss_vectorized(W, X_dev, y_dev, 0.0) #print('loss: %f' % loss) #print('sanity check: %f' % (-np.log(0.1))) # test gradient without regularization #def f(w): return softmax_loss_vectorized(W, X_dev, y_dev, 0.0)[0] #grad_numerical = grad_check_sparse(f, W, grad, 10) # test gradient with regularization #def f(w): return softmax_loss_vectorized(W, X_dev, y_dev, 1e2)[0] #grad_numerical = grad_check_sparse(f, W, grad, 10) softmax = Softmax() loss_history = softmax.train(X_train, y_train, learning_rate=1e-7, reg=5e4, num_iters=1500, verbose=True) plt.plot(loss_history) plt.xlabel('Iteration number') plt.ylabel('Loss value') plt.show()