def get_battle(self): for battle_scene in self.battle_scenes: if analyze(self.screenshot, battle_scene, self.threshold) == 1: split() combat = Battle() combat.get_cards() break
def simple(): from util import reader r = reader.stringSepReader("u.data", "\t") from util import split train, test1 = split.split(r.getR(), 1234567890) from recommender import nonpersonalized c = nonpersonalized.randomRec(r.getR(), 3284092) from util import test test.auc(test1, c.getRec, r)
def svd(): from util import reader r = reader.tabSepReader("u.data") from util import split train, test1 = split.split(r.getR(), 1234567890) from recommender import svd W, H = svd.learnModel(r.getMaxUid(), r.getMaxIid(), 0.0002, train, 1000, 25, r.numberOfTransactions) import numpy as np np.savez_compressed( "SVDModelFile", W=W, H=H) # modelf = np.load("BPRMFModelFile" + ".npz") # W = modelf['W'] # H = modelf['H'] # modelf.close from util import test t = test.MFtest(W, H, train) test.hitrate(test1, t.getRec, 10)
def slopeone(): from util import reader r = reader.tabSepReader("u.data") from util import split train, test1 = split.split(r.getR(), 12320894329854567890) from recommender import slopeone so = slopeone.slopeone(train) # import cPickle # output = open("slopeone.npz", "wb") # cPickle.dump(so, output, -1) # output.close() # inputfile = open("slopeone.npz", "rb") # so = cPickle.load(inputfile) # inputfile.close() from util import test test.auc(test1, so.getRec, r)
def mf(): from util import reader r = reader.tabSepReader("u.data") from util import split train, test1 = split.split(r.getR(), 1234567890) from recommender import mf W, H = mf.learnModel(r.getMaxUid(), r.getMaxIid(), 0.01, 0.01, 0.01, 0.1, train, 150, 3, r.numberOfTransactions, mf.logLoss, mf.dLogLoss) import numpy as np # np.savez_compressed( # "BPRMFModelFile", W=W, H=H) # modelf = np.load("BPRMFModelFile" + ".npz") # W = modelf['W'] # H = modelf['H'] # modelf.close from util import test t = test.MFtest(W, H, train) test.hitrate(test1, t.getRec, 10)
def fastBPRMF(): from util import reader r = reader.fastStringSepReader("u.data", "\t") from util import split train, test1 = split.split(r.getR(), 1234567890) from recommender import fastBPRMF W, H = fastBPRMF.learnModel(r.getMaxUid(), r.getMaxIid(), 0.01, 0.01, 0.01, 0.1, train, 150, 3) import numpy as np # np.savez_compressed( # "BPRMFModelFile", W=W, H=H) # modelf = np.load("BPRMFModelFile" + ".npz") # W = modelf['W'] # H = modelf['H'] # modelf.close from recommender import mf from util import test t = mf.MFrec(W, H, train) test.hitrate(test1, t.getRec, 10)
from cards.Combat import Combat from util.clean import clean_tmp from util.split import split from interface.Major import Major clean_tmp() s = Major() out = s.recognize() print(out) """ split() a = Combat() for crd in a.card_crd: print(crd) """