Ejemplo n.º 1
0
    def __init__(self, id_path, con_path, char_type):

        self.file_io = FileIO()
        self.encode = CategoryEncode()
        self.count_rec = CountRecord()
        self.extract_col = ExtractColumns()
        self.bin = Binning()
        self.ss = Scaler()
        # ファイルオープン
        self.id = self.file_io.open_file_as_pandas(id_path, char_type)
        self.con = self.file_io.open_file_as_pandas(con_path, char_type)
Ejemplo n.º 2
0
    def __init__(
        self,
        id_path,
        cust_payment_path,
        cust_attr_path,
        target_attr_path,
        average_attr_path,
        cust_path,
        cancel_path,
        contact_path,
        cti_path,
        register_type_path,
        status_path,
        stay_time_path,
        pv_sum_path,
        session_path,
        shop_path,
        pref_path,
        char_type):

        self.file_io = FileIO()
        self.encode = CategoryEncode()
        self.count_rec = CountRecord()
        self.extract_col = ExtractColumns()
        self.bin = Binning()
        # ファイルオープン
        self.id = self.file_io.open_file_as_pandas(id_path,char_type)
        self.cust_payment = self.file_io.open_file_as_pandas(cust_payment_path, char_type)
        self.cust_attr = self.file_io.open_file_as_pandas(cust_attr_path, char_type)
        self.target_attr = self.file_io.open_file_as_pandas(target_attr_path, char_type)
        self.average_attr = self.file_io.open_file_as_pandas(average_attr_path, char_type)
        self.cust = self.file_io.open_file_as_pandas(cust_path, char_type)
        self.cancel = self.file_io.open_file_as_pandas(cancel_path, char_type)
        self.contact = self.file_io.open_file_as_pandas(contact_path, char_type)
        self.cti = self.file_io.open_file_as_pandas(cti_path, char_type)
        self.register_type = self.file_io.open_file_as_pandas(register_type_path, char_type)
        self.status = self.file_io.open_file_as_pandas(status_path, char_type)
        self.stay_time = self.file_io.open_file_as_pandas(stay_time_path, char_type)
        self.pv_sum = self.file_io.open_file_as_pandas(pv_sum_path, char_type)
        self.session = self.file_io.open_file_as_pandas(session_path, char_type)
        self.shop = self.file_io.open_file_as_pandas(shop_path, char_type)
        self.pref = self.file_io.open_file_as_pandas(pref_path, char_type)
Ejemplo n.º 3
0
class PreprocClassify:
    def __init__(self, id_path, con_path, char_type):

        self.file_io = FileIO()
        self.encode = CategoryEncode()
        self.count_rec = CountRecord()
        self.extract_col = ExtractColumns()
        self.bin = Binning()
        self.ss = Scaler()
        # ファイルオープン
        self.id = self.file_io.open_file_as_pandas(id_path, char_type)
        self.con = self.file_io.open_file_as_pandas(con_path, char_type)

    def make_class_data(self, out_path):
        '''目的変数を識別し、分析対象ファイルにマージする'''

        # 売上<=0を削除
        #org_df = self.con.drop(self.con[self.con['売上']<=0].index)

        # 目的変数列を抽出
        cust_attr_col_list = []  # 抽出列リストを初期化
        cust_attr_tg_list = ['売上']  # 抽出列リストに目的変数列を追加
        cust_con_col = self.extract_col.extract(self.con,
                                                self.con['顧客ID'],
                                                extract_col=cust_attr_tg_list)

        # 不要な顧客ID列を削除
        cust_con_col = cust_con_col.drop(['顧客ID'], axis=1)

        # 欠損値をゼロうめ
        cust_con_col = cust_con_col.fillna(0)

        # 抽出した目的変数列に対して、標準化(平均0, 分散1)処理を行う
        std_cust_con_col = self.ss.sl_standard_scaler(cust_con_col,
                                                      data_type='float')

        # 標準化された目的変数列を平均より上か下かで識別
        type_bins = [-1, 0, 1]  # 範囲:(-1,1), 0で分割する
        type_bin_label_list = [0, 1]  # 0より小: low, 0より大: high
        type_col = self.bin.list_divide(std_cust_con_col['売上'], type_bins,
                                        type_bin_label_list)  # 分類用データの生成
        type_df = pd.DataFrame(
            data=type_col,
            index=std_cust_con_col.index)  # 分類用データ(numpy)をdataframeに変更
        type_df.columns = ['クラス']  # dataframeのカラム名を変更

        # 分類用データを既存の分析用データにマージ
        type_df = pd.concat([self.id, type_df], axis=1)  # id列とtype_dfを連結
        con = pd.merge(self.con, type_df, on='顧客ID',
                       how='left')  # 既存dataframeとtype_dfを連結

        # 書き出し処理
        self.file_io.export_csv_from_pandas(con, out_path)
Ejemplo n.º 4
0
class ConcatCsvs:
    def __init__(self, id_path, cust_payment_path, cust_attr_path,
                 target_attr_path, average_attr_path, cust_path, cancel_path,
                 contact_path, cti_path, register_type_path, status_path,
                 stay_time_path, pv_sum_path, session_path, shop_path,
                 pref_path, char_type):

        self.file_io = FileIO()
        self.encode = CategoryEncode()
        self.count_rec = CountRecord()
        self.extract_col = ExtractColumns()
        self.bin = Binning()
        # ファイルオープン
        self.id = self.file_io.open_file_as_pandas(id_path, char_type)
        self.cust_payment = self.file_io.open_file_as_pandas(
            cust_payment_path, char_type)
        self.cust_attr = self.file_io.open_file_as_pandas(
            cust_attr_path, char_type)
        self.target_attr = self.file_io.open_file_as_pandas(
            target_attr_path, char_type)
        self.average_attr = self.file_io.open_file_as_pandas(
            average_attr_path, char_type)
        self.cust = self.file_io.open_file_as_pandas(cust_path, char_type)
        self.cancel = self.file_io.open_file_as_pandas(cancel_path, char_type)
        self.contact = self.file_io.open_file_as_pandas(
            contact_path, char_type)
        self.cti = self.file_io.open_file_as_pandas(cti_path, char_type)
        self.register_type = self.file_io.open_file_as_pandas(
            register_type_path, char_type)
        self.status = self.file_io.open_file_as_pandas(status_path, char_type)
        self.stay_time = self.file_io.open_file_as_pandas(
            stay_time_path, char_type)
        self.pv_sum = self.file_io.open_file_as_pandas(pv_sum_path, char_type)
        self.session = self.file_io.open_file_as_pandas(
            session_path, char_type)
        self.shop = self.file_io.open_file_as_pandas(shop_path, char_type)
        self.pref = self.file_io.open_file_as_pandas(pref_path, char_type)

    def concat(self, out_path, out_path2):
        # 特徴量抽出処理

        # cust_payment
        # カテゴリーデータなし
        # --- check ---
        #print("--- cust_payment shape ---\n {}\n".format(self.cust_payment.shape))
        #print(self.cust_payment.head())

        # cust_attr
        cust_attr_col_list = []
        cust_attr_tg_list = [
            '指名回数', 'コース受諾回数', '紹介カード受渡回数', '治療送客回数', '院長挨拶回数'
        ]
        # カテゴリ列を抽出
        cust_attr_category_col = self.extract_col.extract(
            self.cust_attr,
            self.cust_attr['顧客ID'],
            extract_col=cust_attr_tg_list)
        # 非カテゴリ列を抽出
        cust_attr_non_category_col = self.extract_col.exclude(
            self.cust_attr, exclude_col=cust_attr_tg_list)
        # 特徴量抽出
        org_cust_attr = self.encode.transform_feature(
            cust_attr_category_col, aggregate_col=cust_attr_tg_list)
        org_cust_attr = org_cust_attr.fillna(0)
        #org_cust_attr = org_cust_attr.drop('Unnamed: 0', axis=1)
        # ラベル付与
        for col in cust_attr_tg_list:
            cust_attr_col_list += self.encode.transform_label(
                self.cust_attr[col], col)
        else:
            cust_attr_col_list += ['顧客ID']
        # ラベル設定
        org_cust_attr.columns = cust_attr_col_list
        # 集計処理
        feat_cust_attr = self.count_rec.group_sum(
            org_cust_attr, index_col='顧客ID', aggregate_col=cust_attr_col_list)
        # カテゴリ列と非カテゴリ列を結合
        feat_cust_attr = pd.merge(feat_cust_attr,
                                  cust_attr_non_category_col,
                                  on='顧客ID',
                                  how='left')
        feat_cust_attr = feat_cust_attr.drop('Unnamed: 0', axis=1)
        # --- check ---
        #print("--- feat_cust_attr shape ---\n {}\n".format(feat_cust_attr.shape))
        #print(feat_cust_attr.head())
        #self.file_io.export_csv_from_pandas(feat_cust_attr, './data/out/mid_feat_cust_attr.csv')

        # product_attr
        '''
        product_attr_col_list = []
        product_attr_tg_list = ['商品コード']
        # カテゴリ列を抽出
        product_attr_category_col = self.extract_col.extract(self.target_attr, self.target_attr['明細ID'], extract_col=product_attr_tg_list)
        # 元DSからカテゴリ列を除去することによって、非カテゴリ列を抽出
        product_attr_non_category_col = self.extract_col.exclude(self.target_attr, exclude_col=product_attr_tg_list)
        # 特徴量抽出
        org_product_attr = self.encode.transform_feature(product_attr_category_col, aggregate_col=product_attr_tg_list)
        org_product_attr = org_product_attr.fillna(0)
        #org_product_attr = org_product_attr.drop('Unnamed: 0', axis=1)
        #print(org_product_attr)
        # ラベル付与
        for col in product_attr_tg_list:
            product_attr_col_list += self.encode.transform_label(self.target_attr[col],col)
        else:
            product_attr_col_list += ['明細ID']
        # ラベル設定
        org_product_attr.columns = product_attr_col_list
        # カテゴリ列と非カテゴリ列を結合
        feat_product_attr = pd.merge(org_product_attr, product_attr_non_category_col, on='明細ID',how='left')
        feat_product_attr = feat_product_attr.drop('Unnamed: 0', axis=1)
        '''
        # product_attr
        feat_product_attr = self.average_attr
        # --- check ---
        #print("--- feat_product_attr shape ---\n {}\n".format(feat_cust_attr.shape))
        #print(feat_product_attr.head())
        #self.file_io.export_csv_from_pandas(feat_product_attr, './data/out/mid_feat_product_attr.csv')

        # cust
        cust_col_list = []
        cust_tg_list = ['性別', '携帯TEL', '自宅TEL', '携帯メール', 'PCメール', '職業']
        # 外れ値を削除
        new_cust = self.cust.drop(self.cust[self.cust['生年月日'].str.contains(
            '\*', na=True)].index)
        today = int(pd.to_datetime('today').strftime('%Y%m%d'))
        new_cust['生年月日'] = pd.to_datetime(
            new_cust['生年月日']).dt.strftime('%Y%m%d').astype(np.int64)
        new_cust['生年月日'] = ((today - new_cust['生年月日']) / 10000).astype(
            np.int64)
        new_cust['生年月日'] = self.bin.list_divide(new_cust['生年月日'],
                                                [0, 10, 20, 30, 40, 50],
                                                ['10', '20', '30', '40', '50'])
        # カテゴリ列を抽出
        cust_category_col = self.extract_col.extract(new_cust,
                                                     new_cust['顧客ID'],
                                                     extract_col=cust_tg_list)
        # 非カテゴリ列を抽出
        cust_non_category_col = self.extract_col.exclude(
            new_cust, exclude_col=cust_tg_list)
        # 特徴量抽出
        feat_cust = self.encode.transform_feature(cust_category_col,
                                                  aggregate_col=cust_tg_list)
        feat_cust = feat_cust.fillna(0)
        #feat_cust = feat_cust.drop('Unnamed: 0', axis=1)
        feat_cust = feat_cust[feat_cust.columns.drop(
            list(feat_cust.filter(regex='Unnamed:')))]
        # ラベル付与
        for col in cust_tg_list:
            cust_col_list += self.encode.transform_label(new_cust[col], col)
        else:
            cust_col_list += ['顧客ID']
        # ラベル設定
        feat_cust.columns = cust_col_list
        # カテゴリ列と非カテゴリ列を結合
        feat_cust = pd.merge(feat_cust,
                             cust_non_category_col,
                             on='顧客ID',
                             how='left')
        #feat_cust = feat_cust.drop('Unnamed: 0', axis=1)
        # --- check ---
        #print("--- feat_cust shape ---\n {}\n".format(feat_cust.shape))
        #print(feat_cust.head())
        #self.file_io.export_csv_from_pandas(feat_cust, './data/out/mid_feat_cust.csv')

        # shop
        shop_col_list = []
        shop_tg_list = ['担当店舗']
        # カテゴリ列を抽出
        shop_category_col = self.extract_col.extract(self.shop,
                                                     self.shop['顧客ID'],
                                                     extract_col=shop_tg_list)
        # 特徴量抽出
        feat_shop = self.encode.transform_feature(shop_category_col,
                                                  aggregate_col=shop_tg_list)
        feat_shop = feat_shop.fillna(0)
        #feat_shop = feat_cust.drop('Unnamed: 0', axis=1)
        feat_shop = feat_shop[feat_shop.columns.drop(
            list(feat_shop.filter(regex='Unnamed:')))]
        # ラベル付与
        for col in shop_tg_list:
            shop_col_list += self.encode.transform_label(self.shop[col], col)
        else:
            shop_col_list += ['顧客ID']
        # ラベル設定
        feat_shop.columns = shop_col_list
        #feat_shop = feat_shop.drop('Unnamed: 0', axis=1)
        # --- check ---
        #print("--- feat_shop shape ---\n {}\n".format(feat_shop.shape))
        #print(feat_shop.head())
        #self.file_io.export_csv_from_pandas(feat_shop, './data/out/mid_feat_shop.csv')

        # pref
        pref_col_list = []
        pref_tg_list = ['町域']
        new_pref = self.pref.drop(self.pref[self.pref['町域'] == 0].index)
        # カテゴリ列を抽出
        pref_category_col = self.extract_col.extract(new_pref,
                                                     new_pref['顧客ID'],
                                                     extract_col=pref_tg_list)
        # 特徴量抽出
        feat_pref = self.encode.transform_feature(pref_category_col,
                                                  aggregate_col=pref_tg_list)
        feat_pref = feat_pref.fillna(0)
        #feat_pref = feat_cust.drop('Unnamed: 0', axis=1)
        feat_pref = feat_pref[feat_pref.columns.drop(
            list(feat_pref.filter(regex='Unnamed:')))]
        # ラベル付与
        for col in pref_tg_list:
            pref_col_list += self.encode.transform_label(self.pref[col], col)
        else:
            pref_col_list += ['顧客ID']
        # ラベル設定
        feat_pref.columns = pref_col_list
        #feat_pref = feat_pref.drop('Unnamed: 0', axis=1)
        # --- check ---
        #print("--- feat_pref shape ---\n {}\n".format(feat_pref.shape))
        #print(feat_pref.head())
        #self.file_io.export_csv_from_pandas(feat_pref, './data/out/mid_feat_pref.csv')

        # cancel
        # カテゴリーデータなし
        # --- check ---
        #print("--- cancel shape ---\n {}\n".format(cancel.shape))
        #print(cancel.head())

        # contact
        # カテゴリーデータなし
        # --- check ---
        #print("--- contact shape ---\n {}\n".format(contact.shape))
        #print(contact.head())

        # cti
        # カテゴリーデータなし
        # --- check ---
        #print("--- cti shape ---\n {}\n".format(cti.shape))
        #print(cti.head())

        # stay_time
        new_stay_time = self.stay_time
        new_stay_time['滞在時間'] = self.bin.quant_divide(
            new_stay_time['滞在時間'], 6, ['1', '2', '3', '4', '5'])
        bin_stay_time = new_stay_time.drop('Unnamed: 0', axis=1)

        # pv_sum
        new_pv_sum = self.pv_sum
        new_pv_sum['閲覧ページ総数'] = self.bin.quant_divide(
            new_pv_sum['閲覧ページ総数'], 11,
            ['1', '2', '3', '4', '5', '6', '7', '8', '9', '10'])
        bin_pv_sum = new_pv_sum.drop('Unnamed: 0', axis=1)

        # session
        new_session = self.session
        new_session['閲覧ページ数/セッション'] = self.bin.quant_divide(
            new_session['閲覧ページ数/セッション'], 6, ['1', '2', '3', '4', '5'])
        bin_session = new_session.drop('Unnamed: 0', axis=1)

        # register_type
        reg_col_list = []
        reg_tg_list = ['登録区分']
        # カテゴリ列を抽出
        reg_category_col = self.extract_col.extract(self.register_type,
                                                    self.register_type['顧客ID'],
                                                    extract_col=reg_tg_list)
        # 非カテゴリ列を抽出
        reg_non_category_col = self.extract_col.exclude(
            self.register_type, exclude_col=reg_tg_list)
        # 特徴量抽出
        feat_register_type = self.encode.transform_feature(
            reg_category_col, aggregate_col=reg_tg_list)
        feat_register_type = feat_register_type.fillna(0)
        #feat_register_type = feat_register_type.drop('Unnamed: 0', axis=1)
        # ラベル付与
        for col in reg_tg_list:
            reg_col_list += self.encode.transform_label(
                self.register_type[col], col)
        else:
            reg_col_list += ['顧客ID']
        # ラベル設定
        feat_register_type.columns = reg_col_list
        # カテゴリ列と非カテゴリ列を結合
        feat_register_type = pd.merge(feat_register_type,
                                      reg_non_category_col,
                                      on='顧客ID',
                                      how='left')
        feat_register_type = feat_register_type.drop('Unnamed: 0', axis=1)
        # --- check ---
        #print("--- feat_register_type shape ---\n {}\n".format(feat_register_type.shape))
        #print(feat_register_type.head())
        #self.file_io.export_csv_from_pandas(feat_register_type, './data/out/mid_feat_register_type.csv')

        # status
        stat_col_list = []
        stat_tg_list = ['状況', '指名区分']
        # カテゴリ列を抽出
        stat_category_col = self.extract_col.extract(self.status,
                                                     self.status['顧客ID'],
                                                     extract_col=stat_tg_list)
        # 非カテゴリ列を抽出
        stat_non_category_col = self.extract_col.exclude(
            self.status, exclude_col=stat_tg_list)
        # 特徴量抽出
        feat_status = self.encode.transform_feature(stat_category_col,
                                                    aggregate_col=stat_tg_list)
        feat_status = feat_status.fillna(0)
        #feat_status = feat_status.drop('Unnamed: 0', axis=1)
        # ラベル付与
        for col in stat_tg_list:
            stat_col_list += self.encode.transform_label(self.status[col], col)
        else:
            stat_col_list += ['顧客ID']
        # ラベル設定
        feat_status.columns = stat_col_list
        # カテゴリ列と非カテゴリ列を結合
        feat_status = pd.merge(feat_status,
                               stat_non_category_col,
                               on='顧客ID',
                               how='left')
        feat_status = feat_status.drop('Unnamed: 0', axis=1)
        #feat_status = feat_status.drop('Unnamed: 0', axis=1)
        # --- check ---
        #print("--- feat_status shape ---\n {}\n".format(feat_status.shape))
        #print(feat_status.head())
        #self.file_io.export_csv_from_pandas(feat_status, './data/out/mid_feat_status.csv')

        # 結合処理
        con_file = pd.merge(feat_product_attr,
                            self.cust_payment,
                            on='顧客ID',
                            how='left')
        #print("1.1: shape is {}".format(con_file.shape))
        con_file = pd.merge(con_file, self.cancel, on='顧客ID', how='left')
        #print("1.2: shape is {}".format(con_file.shape))
        con_file = pd.merge(con_file, self.contact, on='顧客ID', how='left')
        #print("1.3: shape is {}".format(con_file.shape))
        con_file = pd.merge(con_file, self.cti, on='顧客ID', how='left')
        #print("1.4: shape is {}".format(con_file.shape))
        con_file = pd.merge(con_file, bin_stay_time, on='顧客ID', how='left')
        #print("1.5: shape is {}".format(con_file.shape))
        con_file = pd.merge(con_file, bin_pv_sum, on='顧客ID', how='left')
        #print("1.6: shape is {}".format(con_file.shape))
        con_file = pd.merge(con_file, bin_session, on='顧客ID', how='left')
        #print("1.7: shape is {}".format(con_file.shape))
        con_file = pd.merge(con_file, feat_cust_attr, on='顧客ID', how='left')
        #print("1.8: shape is {}".format(con_file.shape))
        con_file = pd.merge(con_file, feat_cust, on='顧客ID', how='left')
        #print("1.9: shape is {}".format(con_file.shape))
        con_file = pd.merge(con_file,
                            feat_register_type,
                            on='顧客ID',
                            how='left')
        #print("1.10: shape is {}".format(con_file.shape))
        #con_file = pd.merge(con_file, feat_status, on='顧客ID',how='left')
        #print("1.11: shape is {}".format(con_file.shape))
        '''con_file = pd.concat([
            self.cust_payment,
            feat_cust_attr,
            feat_cust,
            self.cancel,
            self.contact,
            self.cti,
            feat_register_type,
            feat_status,
            self.stay_time,
            self.pv_sum,
            self.session], axis=1, join_axes=['顧客ID'])'''
        # --- check ---
        #print("--- con_file shape ---\n {}\n".format(con_file.shape))
        #print(con_file.head())

        # 結合処理
        con_product_file = pd.merge(self.id,
                                    self.cust_payment,
                                    on='顧客ID',
                                    how='left')
        con_product_file = pd.merge(con_product_file,
                                    feat_product_attr,
                                    on='顧客ID',
                                    how='left')
        #print("2.1: shape is {}".format(con_file.shape))

        # 重複がある場合、削除
        con_file = con_file.drop_duplicates()
        con_product_file = con_product_file.drop_duplicates()
        con_product_file = con_product_file.drop(['施術時間', '売上単価', '数量'],
                                                 axis=1)

        # 書き出し処理
        self.file_io.export_csv_from_pandas(con_file, out_path)
        self.file_io.export_csv_from_pandas(con_product_file, out_path2)
        self.file_io.export_csv_from_pandas(feat_shop,
                                            './data/out/feat_shop.csv')
        self.file_io.export_csv_from_pandas(feat_pref,
                                            './data/out/feat_pref.csv')