Ejemplo n.º 1
0
def isomap_features_no_classifier_ffnn_rul_prediction(training_data,
                                                      comparison_set):
    # Read Training data
    isomap_training_data = training_data

    # Remove labels
    isomap_training_data = concat_dfs(isomap_training_data)
    labels = isomap_training_data.pop('RUL')
    model_training_data, isomap = isomap_embedded_data_frame(
        isomap_training_data, verbose=False)

    ffnn, training_history = fit_ffnn(model_training_data, labels, epochs=100)

    plot_trainings_history(training_history)
    # Visualize predicted RUL in comparison to real RUL
    #   comparison_set = read_raw_dfs(FULL_TEST_SET)
    # Remove label
    label_data = pop_labels(comparison_set)
    # Apply autoencoder
    comparison_set = [
        pd.DataFrame(isomap.transform(X=df)) for df in comparison_set
    ]

    plot_rul_comparisons(comparison_set,
                         label_data=label_data,
                         prediction_model=ffnn)
def all_features_li_2019_classifier_ffnn_rul_prediction():
    training_set = read_dfs(LEARNING_SET, ALL_FEATURES)
    # Two-Stage: lei et al 2019
    training_set, first_prediction_times = cut_fpts(training_set)
    training_set = procentual_rul(training_set, first_prediction_times)

    # Visualize FPTs
    plot_fpts(first_prediction_times, training_set, 'fourier_entropy')

    # Concatenate trainings data
    concatenated_training_set = pd.concat(
        training_set,
        ignore_index=True,
        keys=['Bearing' + str(x) for x in range(0, len(training_set))])
    labels = concatenated_training_set.pop('RUL')

    # Train FFNN
    trainings_history, ffnn = fit_ffnn(X=concatenated_training_set,
                                       y=labels,
                                       dropout=True,
                                       epochs=50)

    # Visualize training history and later validation history
    plot_trainings_history(trainings_history)
    # Visualize predicted RUL in comparison to real RUL of learning set
    plot_rul_comparisons(training_set, prediction_model=ffnn)

    # TESTING ESTIMATIONS #
    testing_set = read_dfs(FULL_TEST_SET, ALL_FEATURES)
    testing_set, fpts = cut_fpts(testing_set)
    testing_set = procentual_rul(testing_set, fpts)
    plot_rul_comparisons(testing_set, prediction_model=ffnn)
def all_features_pca_combination_no_classifier_ffnn_rul_prediction():
    # Read Training data
    feature_list = ALL_FEATURES
    training_data = read_feature_dfs(data_set_sub_set=LEARNING_SET, features=feature_list)
    learning_set = concat_dfs(training_data)
    training_labes = learning_set.pop('RUL')

    # Remove labels
    model_training_data, pca = pca_embedded_data_frame(learning_set, verbose=False)

    model_training_data = pd.DataFrame(model_training_data)
    ffnn, training_history = fit_ffnn(model_training_data, training_labes, epochs=60)  # TODO dropout=True

    plot_trainings_history(training_history)

    # Visualize predicted RUL in comparison to real RUL of training set
    # Remove label
    training_label_data = pop_labels(training_data)
    # Apply PCA
    transformed_training_set = []
    for df in tqdm(training_data, desc="Transforming validation set.", position=0, leave=True):
        transformed_training_set += [pd.DataFrame(pca.transform(X=df))]
    plot_rul_comparisons(transformed_training_set, label_data=training_label_data, prediction_model=ffnn)

    # Visualize predicted RUL in comparison to real RUL of validation set
    comparison_set = read_feature_dfs(data_set_sub_set=FULL_TEST_SET, features=feature_list)
    # Remove label
    label_data = pop_labels(comparison_set)
    # Apply PCA
    transformed_comparison_set = []
    for df in tqdm(comparison_set, desc="Transforming validation set.", position=0, leave=True):
        transformed_comparison_set += [pd.DataFrame(pca.transform(X=df))]

    plot_rul_comparisons(transformed_comparison_set, label_data=label_data, prediction_model=ffnn)
def tba_features_ahmad_et_al_2019_ffnn():
    feature_list = BASIC_STATISTICAL_FEATURES

    fpt_method = ahmad_et_al_2019
    signal_key = "root_mean_square"
    learning_set = read_feature_dfs(data_set_sub_set=LEARNING_SET, features=feature_list)

    # Calculate FPTs and cut dataframes
    cut_learning_set, first_prediction_times = cut_fpts(learning_set, fpt_method=fpt_method,
                                                        signal_key=signal_key)

    plot_fpts(first_prediction_times=first_prediction_times, df_list=learning_set,
              classification_indicator="root_mean_square")

    cut_learning_set = concat_dfs(cut_learning_set)
    training_labes = cut_learning_set.pop('RUL')
    ffnn, trainings_history = fit_ffnn(X=cut_learning_set, y=training_labes, epochs=100)
    # Plot trainings history
    plot_trainings_history(trainings_history=trainings_history, error_type='RMSE')

    # Read test set
    testing_set = read_feature_dfs(data_set_sub_set=FULL_TEST_SET, features=feature_list)
    cut_testing_set, _ = cut_fpts(testing_set, fpt_method=fpt_method, signal_key=signal_key)
    testing_labels = pop_labels(cut_testing_set)

    plot_rul_comparisons(cut_testing_set, testing_labels, ffnn)
Ejemplo n.º 5
0
def all_features_and_autoencoder_li_2019_classifier_ffnn_rul_prediction():
    # Input features: statistical features
    learning_feature_df_list = read_feature_dfs(LEARNING_SET,
                                                FEATURES_CSV_NAME)

    # Two-Stage: lei et al 2019
    cut_dfs, first_prediction_times = cut_fpts(learning_feature_df_list)
    # Visualize FPTs
    # plot_fpts(first_prediction_times, learning_feature_df_list, 'root_mean_square')

    # Concatenate trainings data
    all_bearings = concat_dfs(cut_dfs)
    labels = all_bearings.pop('RUL')
    all_bearings, pca = pca_embedded_data_frame(all_bearings)

    # RUL prediction: FFNN
    trainings_history, ffnn = fit_ffnn(X=all_bearings,
                                       y=labels,
                                       dropout=True,
                                       epochs=150)

    # Visualize training history and later validation history
    plot_trainings_history(trainings_history)
    # Visualize predicted RUL in comparison to real RUL
    comparison_set = read_feature_dfs(FULL_TEST_SET, FEATURES_CSV_NAME)
    comparison_set, first_prediction_times = cut_fpts(comparison_set)
    # Remove label
    label_data = pop_labels(comparison_set)
    # Apply PCA
    comparison_set = [pd.DataFrame(pca.transform(df)) for df in comparison_set]

    plot_rul_comparisons(comparison_set,
                         label_data=label_data,
                         prediction_model=ffnn)
Ejemplo n.º 6
0
def all_features_no_classifier_lstm_rul_prediction():
    trainings_data = read_feature_dfs(LEARNING_SET)
    #trainings_data = concat_dfs(trainings_data)
    trainings_labels = pop_labels(trainings_data)

    lstm, trainings_history = fit_lstm(trainings_data,
                                       trainings_labels,
                                       dropout=True)
    plot_trainings_history(trainings_history=trainings_history)
def statistical_frequency_features_no_classifier_ffnn_rul_prediction():
    trainings_data = read_feature_dfs(LEARNING_SET)
    trainings_data = concat_dfs(trainings_data)
    trainings_labels = trainings_data.pop('RUL')
    filtered_cols: list = [
        column for column in trainings_data if column.startswith('frequency_')
    ]
    trainings_data = trainings_data[filtered_cols]
    ffnn, trainings_history = fit_ffnn(trainings_data,
                                       trainings_labels,
                                       dropout=True,
                                       epochs=100,
                                       hidden_units=1024,
                                       hidden_layers=4)
    # Visualize trainings history
    plot_trainings_history(trainings_history)
def pca_features_no_classifier_ffnn_rul_prediction(training_data,
                                                   comparison_set):
    hi = __name__
    # Read Training data
    # Remove labels
    pca_training_data = concat_dfs(training_data)
    labels = pca_training_data.pop('RUL')
    model_training_data, pca = pca_embedded_data_frame(pca_training_data,
                                                       n_components=300,
                                                       verbose=False)

    model_training_data = pd.DataFrame(model_training_data)
    ffnn, training_history = fit_ffnn(model_training_data,
                                      labels,
                                      epochs=60,
                                      dropout=True)

    plot_trainings_history(training_history)

    # Visualize predicted RUL in comparison to real RUL of training set
    # Remove label
    training_label_data = pop_labels(training_data)
    # Apply PCA
    transformed_training_set = []
    for df in tqdm(training_data,
                   desc="Transforming training set.",
                   position=0,
                   leave=True):
        transformed_training_set += [pd.DataFrame(pca.transform(X=df))]
    plot_rul_comparisons(transformed_training_set,
                         label_data=training_label_data,
                         prediction_model=ffnn)

    # Visualize predicted RUL in comparison to real RUL of validation set
    # Remove label
    label_data = pop_labels(comparison_set)
    # Apply PCA
    transformed_comparison_set = []
    for df in tqdm(comparison_set,
                   desc="Transforming validation set.",
                   position=0,
                   leave=True):
        transformed_comparison_set += [pd.DataFrame(pca.transform(X=df))]

    plot_rul_comparisons(transformed_comparison_set,
                         label_data=label_data,
                         prediction_model=ffnn)
Ejemplo n.º 9
0
def spectra_features_no_classifier_cnn_rul_prediction(train: bool = True):
    model_path: str = Path('keras_models').joinpath('spectra_none_cnn')
    n_rows: int = 129
    n_cols: int = 21
    spectra_shape: tuple = (n_rows, n_cols)
    input_shape: tuple = (n_rows, n_cols, 1)

    if train:
        # Read in training data
        # print("Read in training data")
        read_spectra_dfs = read_feature_dfs(LEARNING_SET, SPECTRA_CSV_NAME)
        spectra_dfs = pd.concat(
            read_spectra_dfs,
            ignore_index=True,
            keys=['Bearing' + str(x) for x in range(0, len(read_spectra_dfs))])
        labels = spectra_dfs.pop('RUL')

        # Reformat flattened spectra
        spectra_dfs = spectra_dfs.to_numpy()
        spectra_dfs = np.array(
            [df.reshape(spectra_shape) for df in spectra_dfs])

        # Train and save CNN
        # print("Train and save CNN")
        trainings_history, cnn = fit_cnn(spectra_dfs,
                                         labels,
                                         input_shape=input_shape,
                                         epochs=20)

        # Visualize training history
        plot_trainings_history(trainings_history)

        cnn.save(model_path)
    else:
        # Load pre-trained CNN model
        cnn = keras.models.load_model(model_path)

    # Visualize predicted RUL in comparison to real RUL of learning set
    # print("Visualize predicted RUL in comparison to real RUL of learning set")
    comparison_set = read_feature_dfs(FULL_TEST_SET, SPECTRA_CSV_NAME)
    label_data = pop_labels(comparison_set)
    reshaped_comparison_set = reformat_flattened_data(comparison_set,
                                                      n_rows=n_rows,
                                                      n_cols=n_cols)
    plot_rul_comparisons(reshaped_comparison_set, label_data, cnn)
def entropy_features_no_classifier_ffnn():
    feature_list = ENTROPY_FEATURES
    learning_set = read_feature_dfs(data_set_sub_set=LEARNING_SET,
                                    features=feature_list)
    learning_set = concat_dfs(learning_set)
    training_labes = learning_set.pop('RUL')

    ffnn, trainings_history = fit_ffnn(X=learning_set,
                                       y=training_labes,
                                       epochs=100)

    plot_trainings_history(trainings_history=trainings_history,
                           error_type='RMSE')

    testing_set = read_feature_dfs(data_set_sub_set=FULL_TEST_SET,
                                   features=feature_list)
    testing_labels = pop_labels(testing_set)

    plot_rul_comparisons(testing_set, testing_labels, ffnn)
def tba_features_li_et_al_2019_svr():
    feature_list = []
    use_hs_classifier = True
    fpt_method = li_et_al_2019
    signal_key = "kurtosis"

    learning_set = read_feature_dfs(data_set_sub_set=LEARNING_SET,
                                    features=feature_list)

    if use_hs_classifier:
        # Calculate FPTs and cut dataframes
        cut_learning_set, first_prediction_times = cut_fpts(
            learning_set, fpt_method=fpt_method, signal_key=signal_key)

        plot_fpts(first_prediction_times=first_prediction_times,
                  df_list=learning_set,
                  classification_indicator="root_mean_square")

        cut_learning_set = concat_dfs(cut_learning_set)
        training_labes = cut_learning_set.pop('RUL')
        svr, trainings_history = fit_svr(X=cut_learning_set, y=training_labes)
    else:
        learning_set = concat_dfs(learning_set)
        training_labes = learning_set.pop('RUL')
        svr, trainings_history = fit_svr(X=learning_set, y=training_labes)

    # Plot trainings history
    plot_trainings_history(trainings_history=trainings_history,
                           error_type='RMSE')

    # Read test set
    testing_set = read_feature_dfs(data_set_sub_set=FULL_TEST_SET,
                                   features=feature_list)
    if use_hs_classifier:
        testing_set, _ = cut_fpts(testing_set,
                                  fpt_method=fpt_method,
                                  signal_key=signal_key)
    testing_labels = pop_labels(testing_set)

    plot_rul_comparisons(testing_set, testing_labels, svr)
Ejemplo n.º 12
0
def statistical_features_li_2019_classifier_ffnn_rul_prediction():
    # Input features: statistical features
    learning_feature_df_list = read_dfs(LEARNING_SET,
                                        FEATURES_CSV_NAME,
                                        features=BASIC_STATISTICAL_FEATURES)

    # Two-Stage: lei et al 2019
    cut_dfs, first_prediction_times = cut_fpts(learning_feature_df_list)
    # Visualize FPTs
    # plot_fpts(first_prediction_times, learning_feature_df_list, 'root_mean_square')

    # Concatenate trainings data
    all_bearings = concat_dfs(cut_dfs)
    labels = all_bearings.pop('RUL')

    # RUL prediction: FFNN
    trainings_history, ffnn = fit_ffnn(X=all_bearings,
                                       y=labels,
                                       dropout=True,
                                       epochs=100,
                                       hidden_layers=3,
                                       hidden_units=1024)
    # Visualize training history and later validation history
    plot_trainings_history(trainings_history)

    # Visualize predicted RUL in comparison to real RUL on trainings set
    label_data = pop_labels(cut_dfs)
    plot_rul_comparisons(cut_dfs, label_data=label_data, prediction_model=ffnn)

    # Visualize predicted RUL in comparison to real RUL on test set
    comparison_set = read_dfs(FULL_TEST_SET,
                              FEATURES_CSV_NAME,
                              features=BASIC_STATISTICAL_FEATURES)
    comparison_set, first_prediction_times = cut_fpts(comparison_set)

    # Remove label
    label_data = pop_labels(comparison_set)
    plot_rul_comparisons(comparison_set,
                         label_data=label_data,
                         prediction_model=ffnn)