Ejemplo n.º 1
0
    def __init__(self, cfg, name=""):
        self.config = cfg  # configuration object from MuonAlignmentAlgorithms/scripts/
        self.name = name

        self.vb = util.VERBOSE()
        self.vb.level = cfg.verbose_level()
        self.vb.name = name

        self.lineColor = ROOT.kBlack
        self.yTitle = "Number of "
        color = ROOT.TColor()

        if self.config.doDT():
            self.fillColor = color.GetColor("#ffe0a1")  # ROOT.kGreen + 3
            self.yTitle += "DTs"
        elif self.config.doCSC():
            self.fillColor = color.GetColor("#3ffa3f")  # ROOT.kBlue - 7
            self.yTitle += "CSCs"
        else:
            self.fillColor = ROOT.kCyan
            self.yTitle += "chambers"

        self.histograms = {}
        self.coordinates = ["x", "y", "z", "phix", "phiy", "phiz"]
        self.units = {
            "x": "(mm)",
            "y": "(mm)",
            "z": "(mm)",
            "phix": "(mrad)",
            "phiy": "(mrad)",
            "phiz": "(mrad)"
        }
        self.tex_names = {
            "x": "x",
            "y": "y",
            "z": "z",
            "phix": r"#phi_{x}",
            "phiy": r"#phi_{y}",
            "phiz": r"#phi_{z}"
        }
        self.html_names = {
            "x": "δx",
            "y": "δy",
            "z": "δz",
            "phix": "&delta;&phi;<sub>x</sub>",
            "phiy": "&delta;&phi;<sub>y</sub>",
            "phiz": "&delta;&phi;<sub>z</sub>"
        }

        self.latex_names = {
            "x": "\\delta x",
            "y": "\\delta y",
            "z": "\\delta z",
            "phix": "\\delta \\phi_{x}",
            "phiy": "\\delta \\phi_{x}",
            "phiz": "\\delta \\phi_{x}"
        }

        self.correction_label = r"#delta"
        self.uncertainty_label = r"#sigma_{fit}"
Ejemplo n.º 2
0
    def initialize(self):
        """Initialize a few parameters after they've been set by user"""
        self.msg_svc = util.VERBOSE()
        self.msg_svc.level = self.verbose_level
        self.msg_svc.initialize()
        self.verbose = self.verbose_level == "DEBUG"

        # Set name for the model, if needed
        if not self.model_name:
            self.model_name = self.hep_data.split('/')[-1].split(
                '.')[0] + '_' + self.date

        # initialize empty dictionaries, lists
        self.test_data = {'X': [], 'Y': []}
        self.train_data = {'X': [], 'Y': []}
        self.test_predictions = []
        self.train_predictions = []

        self.fpr = []  # false positive rate
        self.tpr = []  # true positive rate
        self.histories = []

        ## -- Plotting framework
        self.msg_svc.INFO("DL :  >> Store output in {0}".format(
            self.output_dir))
        self.plotter = DeepLearningPlotter(
        )  # class for plotting relevant NN information
        self.plotter.image_format = 'pdf'

        ## -- Adjust model architecture parameters (flexibilty in config file)
        if len(self.nNodes) == 1 and self.nHiddenLayers > 0:
            # All layers (initial & hidden) have the same number of nodes
            self.msg_svc.DEBUG(
                "DL : Setting all layers ({0}) to have the same number of nodes ({1})"
                .format(self.nHiddenLayers + 1, self.nNodes))
            nodes_per_layer = self.nNodes[0]
            self.nNodes = [
                nodes_per_layer for _ in range(self.nHiddenLayers + 1)
            ]  # 1st layer + nHiddenLayers

        ## -- Adjust activation function parameter (flexibilty in config file)
        if len(self.activations) == 1:
            # Assume the same activation function for all layers (input,hidden,output)
            self.msg_svc.DEBUG("DL : Setting input, hidden, and output layers ({0}) \n".format(self.nHiddenLayers+2)+\
                               "     to have the same activation function {0}".format(self.activations[0]) )
            activation = self.activations[0]
            self.activations = [
                activation for _ in range(self.nHiddenLayers + 2)
            ]  # 1st layer + nHiddenLayers + output
        elif len(self.activations) == 2 and self.nHiddenLayers > 0:
            # Assume the last activation is for the output and the first+hidden layers have the first activation
            self.msg_svc.DEBUG("DL : Setting input and hidden layers ({0}) to the same activation function, {1},\n".format(self.nHiddenLayers+1,self.activations[0])+\
                               "     and the output activation to {0}".format(self.activations[1]) )
            first_hidden_act = self.activations[0]
            output_act = self.activations[1]
            self.activations = [
                first_hidden_act for _ in range(self.nHiddenLayers + 1)
            ] + [output_act]

        return
Ejemplo n.º 3
0
    def __init__(self,config):
        self.fitLineColor = ROOT.kRed
        self.fitLineWidth = 3

        self.config = config

        self.vb = util.VERBOSE()
        self.vb.level = config.verbose_level()
        self.vb.name  = "HISTOFITDRAW"
Ejemplo n.º 4
0
    def initialize(self):   #,config):
        """Initialize a few parameters after they've been set by user"""
        self.msg_svc       = util.VERBOSE()
        self.msg_svc.level = self.verbose_level
        self.msg_svc.initialize()

        ## -- Plotting framework
        self.plotter.output_dir   = self.output_dir
        self.plotter.image_format = 'pdf'           # must use .pdf at the LPC

        return
Ejemplo n.º 5
0
    def __init__(self,
                 configfile,
                 script='runPlotting.py',
                 verbose_level="INFO"):
        self.filename = configfile

        self.vb = util.VERBOSE()
        self.vb.level = verbose_level
        self.vb.name = "CONFIG"

        self.configuration = {}  # hold all values in dictionary (as strings)
        self.script = script  # the script that calls this class (e..g, createJobs.py)

        self.set_defaults()
Ejemplo n.º 6
0
    def __init__(self):
        """Give default values to member variables"""
        self.formatter       = FormatStrFormatter('%g')         # formatting axis labels
        self.sample_labels   = {}                               # Formatted sample labels
        self.variable_labels = {}                               # Formatted variable labels

        self.backend      = 'uproot'        # backend for hepPlotter
        self.msg_svc      = util.VERBOSE()  # 'level' for printing statements
        self.output_dir   = ''              # directory/path to store the plots
        self.image_format = 'pdf'           # figure format (PDF matches with backend!)
        self.class_pairs  = None            # Unique pairs of targets for comparing
        self.features     = []              # Features used in network

        self.classCollection = util.NNClassCollection()  # NN classes in deep learning
        self.CMSlabelStatus  = "Simulation Internal"     # plot label 
Ejemplo n.º 7
0
    def __init__(self):
        """Give default values to member variables"""
        self.date = date.today().strftime('%d%b%Y')
        self.betterColors = hpt.betterColors()['linecolors']
        self.sample_labels = hpl.sample_labels()
        self.variable_labels = hpl.variable_labels()

        self.msg_svc = util.VERBOSE()
        self.filename = ""
        self.output_dir = ''
        self.image_format = 'png'
        self.process_label = ''  # if a single process is used for all training, set this

        self.classification = False  # 'binary','multi',False
        self.regression = False  # True or False

        self.df = None
        self.targets = []

        self.CMSlabelStatus = "Internal"
Ejemplo n.º 8
0
    def __init__(self):
        """Give default values to member variables"""
        self.date = date.today().strftime('%d%b%Y')

        self.formatter = FormatStrFormatter('%g')
        self.betterColors = hpt.betterColors()['linecolors']
        self.sample_labels = plb.sample_labels()
        self.variable_labels = plb.variable_labels()
        self.scaled_inputs = False

        self.msg_svc = util.VERBOSE()
        self.output_dir = ''
        self.image_format = 'pdf'
        self.process_label = ''  # if a single process is used for all training, set this

        self.df = None
        self.targets = []
        self.target_pairs = None

        self.CMSlabelStatus = "Simulation Internal"
Ejemplo n.º 9
0
    def __init__(self, cfg):
        self.config = cfg

        self.vb = util.VERBOSE()
        self.vb.level = cfg.verbose_level()
        self.vb.name = "PLOTCORRECTIONS"  # simple name of this script to recognize the output

        self.alignmentName = self.config.alignmentName()
        self.referenceName = self.config.referenceName()
        self.correctionName = self.config.correctionName()

        self.isDT = self.config.doDT()
        self.isCSC = self.config.doCSC()

        if (not self.isDT and not self.isCSC) or (self.isDT and self.isCSC):
            self.vb.ERROR(
                "DT and CSC set to same value.  Set only one option to 'true'")
            sys.exit(-1)

        self.html = util.HTML()
Ejemplo n.º 10
0
if hpd not in sys.path:
    sys.path.insert(0, hpd)

import plotlabels as plb
import util
from training import Training
from config import Config

print
print " ------------------------------ "
print " *  Goldilocks Deep Learning  * "
print " ------------------------------ "
print

date = strftime("%d%b%Y-%H%M")
vb = util.VERBOSE()

## Set configuration options ##
config = Config(sys.argv[1])
vb.level = config.verbose_level
vb.initialize()

if not config.runTraining and not config.runInference:
    vb.ERROR("RUN :  No configuration set ")
    vb.ERROR(
        "RUN :  Please set the arguments 'runTraining' or 'runInference' to define workflow "
    )
    vb.ERROR("RUN :  Exiting.")
    sys.exit(1)

## Setup Deep Learning class
Ejemplo n.º 11
0
    def initialize(self):
        """Initialize a few parameters that are required before running, but after __init__()"""
        self.msg_svc = util.VERBOSE()
        self.msg_svc.level = self.verbose_level

        return