Ejemplo n.º 1
0
def create_work_dir(args):
    if args.test:
        work_dir = os.path.abspath(os.path.join(args.outdir, "test"))
    else:
        work_dir = os.path.abspath(os.path.join(args.outdir,
                                                datetime.now().strftime('%Y-%m-%d_%H.%M.%S') + \
                                                ("_" + args.description if args.description else "")))
    create_dir_if_not_exists(work_dir, isfile=False)
    return work_dir
Ejemplo n.º 2
0
def create_exp_settings_file(work_dir, settings_base_file, flat_setting):
    settings_base_file_name = os.path.split(settings_base_file)[-1]
    exp_string = exp_string_from_flat_settings(flat_setting)
    exp_dir = os.path.join(work_dir, names.report_dir(), exp_string)
    create_dir_if_not_exists(exp_dir, isfile=False)
    flat_setting["Report.reportDir"] = exp_dir
    exp_settings_file = os.path.join(work_dir, exp_dir,
                                     settings_base_file_name)
    replace_settings_in_template(settings_base_file, exp_settings_file,
                                 flat_setting)
    return exp_settings_file
Ejemplo n.º 3
0
def main():
    # Training settings
    args = parse_args()

    print('STARTING TRAINING')

    dir_name = 'output'
    create_dir_if_not_exists(dir_name)

    use_cuda, device = initialize_torch(args)

    tranformations = transforms.Compose([
        transforms.RandomRotation(degrees=180),
        transforms.RandomVerticalFlip(),
        transforms.RandomHorizontalFlip(),
        transforms.Resize(size=128),
        transforms.ToTensor(),
        transforms.Normalize((0, ), (1, )),
    ])

    dataset = datasets.DatasetFolder(root=args.dataset_path,
                                     loader=image_load,
                                     transform=tranformations,
                                     extensions=('jpg', ))

    train_proportion = 0.9
    train_length = math.floor(len(dataset) * train_proportion)
    test_length = math.ceil(len(dataset) - train_length)
    train_dataset, test_dataset = torch.utils.data.random_split(
        dataset, (train_length, test_length))

    kwargs = {
        'num_workers': 2,
        'pin_memory': True
    } if use_cuda else {
        'num_workers': 2
    }
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               **kwargs)
    test_loader = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=args.test_batch_size,
                                              shuffle=True,
                                              **kwargs)

    model = generate_model(device, dataset)

    optimizer = optim.Adadelta(model.parameters(), lr=args.lr)

    scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
    accuracy = 0
    last_accuracies = [0] * 5
    for epoch in range(1, args.epochs + 1):
        train_epoch(args, model, device, train_loader, optimizer, epoch)
        accuracy = test(args, model, device, test_loader)
        del last_accuracies[0]
        last_accuracies += [accuracy]
        if average(last_accuracies) > args.stop_accuracy:
            break
        scheduler.step()

    torch.save(model.state_dict(), "output/model.pt")
Ejemplo n.º 4
0
def move_asset(file, dir):
    target = os.path.join(dir, file)
    create_dir_if_not_exists(target, isfile=True)
    shutil.move(file, target)
Ejemplo n.º 5
0
def evaluate(work_dir, plot_all):
    names.exp_dir = work_dir
    plot_dir = os.path.join(work_dir, 'plots')
    create_dir_if_not_exists(plot_dir, isfile=False)
    plot_all()
Ejemplo n.º 6
0
def main():
    parser = HfArgumentParser((ModelArguments, MultimodalDataTrainingArguments,
                               OurTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    create_dir_if_not_exists(training_args.output_dir)
    stream_handler = logging.StreamHandler(sys.stderr)
    file_handler = logging.FileHandler(filename=os.path.join(
        training_args.output_dir, 'train_log.txt'),
                                       mode='w+')
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        level=logging.INFO
        if training_args.local_rank in [-1, 0] else logging.WARN,
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[stream_handler, file_handler])

    logger.info(
        f"======== Model Args ========\n{get_args_info_as_str(model_args)}\n")
    logger.info(
        f"======== Data Args ========\n{get_args_info_as_str(data_args)}\n")
    logger.info(
        f"======== Training Args ========\n{get_args_info_as_str(training_args)}\n"
    )

    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )

    if not data_args.create_folds:
        train_dataset, val_dataset, test_dataset = load_data_from_folder(
            data_args.data_path,
            data_args.column_info['text_cols'],
            tokenizer,
            label_col=data_args.column_info['label_col'],
            label_list=data_args.column_info['label_list'],
            categorical_cols=data_args.column_info['cat_cols'],
            numerical_cols=data_args.column_info['num_cols'],
            categorical_encode_type=data_args.categorical_encode_type,
            numerical_transformer_method=data_args.
            numerical_transformer_method,
            sep_text_token_str=tokenizer.sep_token
            if not data_args.column_info['text_col_sep_token'] else
            data_args.column_info['text_col_sep_token'],
            max_token_length=training_args.max_token_length,
            debug=training_args.debug_dataset,
        )
        train_datasets = [train_dataset]
        val_datasets = [val_dataset]
        test_datasets = [test_dataset]
    else:
        train_datasets, val_datasets, test_datasets = load_data_into_folds(
            data_args.data_path,
            data_args.num_folds,
            data_args.validation_ratio,
            data_args.column_info['text_cols'],
            tokenizer,
            label_col=data_args.column_info['label_col'],
            label_list=data_args.column_info['label_list'],
            categorical_cols=data_args.column_info['cat_cols'],
            numerical_cols=data_args.column_info['num_cols'],
            categorical_encode_type=data_args.categorical_encode_type,
            numerical_transformer_method=data_args.
            numerical_transformer_method,
            sep_text_token_str=tokenizer.sep_token
            if not data_args.column_info['text_col_sep_token'] else
            data_args.column_info['text_col_sep_token'],
            max_token_length=training_args.max_token_length,
            debug=training_args.debug_dataset,
        )
    train_dataset = train_datasets[0]

    set_seed(training_args.seed)
    task = data_args.task
    if task == 'regression':
        num_labels = 1
    else:
        num_labels = len(
            np.unique(train_dataset.labels)
        ) if data_args.num_classes == -1 else data_args.num_classes

    def build_compute_metrics_fn(
            task_name: str) -> Callable[[EvalPrediction], Dict]:
        def compute_metrics_fn(p: EvalPrediction):
            if task_name == "classification":
                preds_labels = np.argmax(p.predictions, axis=1)
                if p.predictions.shape[-1] == 2:
                    pred_scores = softmax(p.predictions, axis=1)[:, 1]
                else:
                    pred_scores = softmax(p.predictions, axis=1)
                return calc_classification_metrics(pred_scores, preds_labels,
                                                   p.label_ids)
            elif task_name == "regression":
                preds = np.squeeze(p.predictions)
                return calc_regression_metrics(preds, p.label_ids)
            else:
                return {}

        return compute_metrics_fn

    total_results = []
    for i, (train_dataset, val_dataset, test_dataset) in enumerate(
            zip(train_datasets, val_datasets, test_datasets)):
        logger.info(f'======== Fold {i+1} ========')
        config = AutoConfig.from_pretrained(
            model_args.config_name
            if model_args.config_name else model_args.model_name_or_path,
            cache_dir=model_args.cache_dir,
        )
        tabular_config = TabularConfig(
            num_labels=num_labels,
            cat_feat_dim=train_dataset.cat_feats.shape[1]
            if train_dataset.cat_feats is not None else 0,
            numerical_feat_dim=train_dataset.numerical_feats.shape[1]
            if train_dataset.numerical_feats is not None else 0,
            **vars(data_args))
        config.tabular_config = tabular_config

        model = AutoModelWithTabular.from_pretrained(
            model_args.config_name
            if model_args.config_name else model_args.model_name_or_path,
            config=config,
            cache_dir=model_args.cache_dir)
        if i == 0:
            logger.info(tabular_config)
            logger.info(model)

        trainer = Trainer(
            model=model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=val_dataset,
            compute_metrics=build_compute_metrics_fn(task),
        )
        if training_args.do_train:
            trainer.train(model_path=model_args.model_name_or_path if os.path.
                          isdir(model_args.model_name_or_path) else None)
            trainer.save_model()

        # Evaluation
        eval_results = {}
        if training_args.do_eval:
            logger.info("*** Evaluate ***")
            eval_result = trainer.evaluate(eval_dataset=val_dataset)
            logger.info(pformat(eval_result, indent=4))

            output_eval_file = os.path.join(
                training_args.output_dir,
                f"eval_metric_results_{task}_fold_{i+1}.txt")
            if trainer.is_world_master():
                with open(output_eval_file, "w") as writer:
                    logger.info("***** Eval results {} *****".format(task))
                    for key, value in eval_result.items():
                        logger.info("  %s = %s", key, value)
                        writer.write("%s = %s\n" % (key, value))

            eval_results.update(eval_result)

        if training_args.do_predict:
            logging.info("*** Test ***")

            predictions = trainer.predict(
                test_dataset=test_dataset).predictions
            output_test_file = os.path.join(
                training_args.output_dir,
                f"test_results_{task}_fold_{i+1}.txt")
            eval_result = trainer.evaluate(eval_dataset=test_dataset)
            logger.info(pformat(eval_result, indent=4))
            if trainer.is_world_master():
                with open(output_test_file, "w") as writer:
                    logger.info("***** Test results {} *****".format(task))
                    writer.write("index\tprediction\n")
                    if task == "classification":
                        predictions = np.argmax(predictions, axis=1)
                    for index, item in enumerate(predictions):
                        if task == "regression":
                            writer.write(
                                "%d\t%3.3f\t%d\n" %
                                (index, item, test_dataset.labels[index]))
                        else:
                            item = test_dataset.get_labels()[item]
                            writer.write("%d\t%s\n" % (index, item))
                output_test_file = os.path.join(
                    training_args.output_dir,
                    f"test_metric_results_{task}_fold_{i+1}.txt")
                with open(output_test_file, "w") as writer:
                    logger.info("***** Test results {} *****".format(task))
                    for key, value in eval_result.items():
                        logger.info("  %s = %s", key, value)
                        writer.write("%s = %s\n" % (key, value))
                eval_results.update(eval_result)
        del model
        del config
        del tabular_config
        del trainer
        torch.cuda.empty_cache()
        total_results.append(eval_results)
    aggr_res = aggregate_results(total_results)
    logger.info('========= Aggr Results ========')
    logger.info(pformat(aggr_res, indent=4))

    output_aggre_test_file = os.path.join(
        training_args.output_dir, f"all_test_metric_results_{task}.txt")
    with open(output_aggre_test_file, "w") as writer:
        logger.info("***** Aggr results {} *****".format(task))
        for key, value in aggr_res.items():
            logger.info("  %s = %s", key, value)
            writer.write("%s = %s\n" % (key, value))
Ejemplo n.º 7
0
def plot_file_from_tuple(tuple, report, suffix=PLOT_SUFFIX):
    plot_file = os.path.join(plot_dir(), exp_string(tuple), plot_file_from(report, suffix))
    create_dir_if_not_exists(plot_file, isfile=True)
    return plot_file
Ejemplo n.º 8
0
def report_file_from_tuple(tuple, report):
    report_file = os.path.join(report_dir(), exp_string(tuple), report_file_from(report))
    create_dir_if_not_exists(report_file, isfile=True)
    return report_file