Ejemplo n.º 1
0
    def broadband_performance_dict(self):
        '''
        Compute the preformace value for an adaptive array.

        Return
        ------
        A dict contains 'array gain', 
                        'noise reduction factor', 
                        'signal reduction facor', 
                        'signal distortion index' values
        '''
        #数字信号宽带计算频率,计算自适应Beamformer的一些性质(宽带的)
        freq = np.linspace(-0.5, 0.5, num=1000,
                           endpoint=True) * 1 / self.sound_field.Ts
        freq = freq[1:-1]

        # 初始化一些矩阵
        filter_vec = np.zeros((self.M, len(freq)), dtype=np.complex)  #滤波器系数
        steer_vec = np.zeros((self.M, len(freq)), dtype=np.complex)  #导向矢量

        observed_cov_vec = np.zeros((self.M, self.M, len(freq)),
                                    dtype=np.complex)  #观测矩阵相关系数
        noise_cov_vec = np.zeros((self.M, self.M, len(freq)),
                                 dtype=np.complex)  #噪声的相关系数矩阵

        desired_var_vec = np.zeros(len(freq), dtype=np.complex)  #期望信号方差
        noise_var_vec = self.sound_field.noise_signal_var * np.ones(
            len(freq))  #第一个阵元噪声的方差

        #赋值
        for i, f in enumerate(freq):
            filter_vec[:, i] = self.filter(f).T
            steer_vec[:, i] = self.steer_vector(f, self.phi).T
            desired_var_vec[i] = self.sound_field.desired_signal_var(f)
            observed_cov_vec[:, :, i] = self.sound_field.observed_signal_cov(f)
            noise_cov_vec[:, :, i] = self.sound_field.noise_signal_cov(f)

        # 输出的信号和噪声的能量
        output_signal_energy = desired_var_vec.dot(
            np.abs(np.sum(filter_vec.conj() * steer_vec,
                          axis=0))**2)  #宽带输出信号能量
        output_noise_energy = 0
        #equations-8
        for i, f in enumerate(freq):
            output_noise_energy += hermitian(filter_vec[:, i]).dot(
                noise_cov_vec[:, :, i]).dot(filter_vec[:, i])  #宽带输出噪声能量

        # 属性字典
        performance_dict = {'array gain'             : dB(output_signal_energy / output_noise_energy, power=True) \
                                                                - self.sound_field._iSNR.get('dB_value'),
                                  'noise reduction factor' : dB(np.sum(noise_var_vec) / output_noise_energy, power=True),
                                  'signal reduction factor': dB(np.sum(desired_var_vec) / output_signal_energy, power=True),
                                  'signal distortion index': dB((desired_var_vec.dot(np.abs(np.sum(filter_vec.conj() * \
                                                        steer_vec, axis=0) - 1) ** 2)) / np.sum(desired_var_vec), power=True)
                        }
        return performance_dict
Ejemplo n.º 2
0
 def snr_direct_method(self, f):
     '''
     Estimate the single-channel Wiener gain directly
     '''
     hw = hermitian(self.steer_vector(f, self.phi)).dot(self.observed_signal_gamma(f) - \
             self.isotropic_noise_coherence(f)).dot(self.steer_vector(f, self.phi)) / \
             (self.M ** 2 - hermitian(self.steer_vector(f, self.phi)).dot(self.isotropic_noise_coherence(f)).dot(self.steer_vector(f, self.phi)))
     return dB(hw)[0][0]
Ejemplo n.º 3
0
 def white_noise_gain(self):
     '''
     return the white noise gain in TDB
     '''
     g = self.steer_vector()
     h = self.filter
     white_noise_gain = h.T.dot(g).dot(g.T).dot(h) / h.T.dot(h)
     white_noise_gain_db = dB(np.abs(white_noise_gain), True)
     return white_noise_gain_db
Ejemplo n.º 4
0
 def directivity(self):
     '''
     return the directivity in TDB
     '''
     g = self.steer_vector()
     h = self.filter
     int_g = self.diffuse_noise_coherence()
     directivity = (h.T.dot(g.dot(g.T)).dot(h)) / (h.T.dot(int_g).dot(h))
     directivity_db = dB(np.abs(directivity), True)
     return directivity_db
Ejemplo n.º 5
0
    def beam_pattern(self):
        """
        绘制波束形成的波束图
        """
        filts = self.filter
        performace = []
        for theta in constants.get('angle_range'):
            g_tmp = self.steer_vector(theta)
            performace_theta = filts.T.dot(g_tmp).dot(g_tmp.T).dot(filts)
            performace.append(performace_theta)

        return dB(np.array(performace), True)
Ejemplo n.º 6
0
 def white_noise_gain(self, f):
     '''
     For fixed beamforming, the WNG equals to  1 / w.conj().T * w
     And in delay and sum the w equals to steervector / self.N
     
     Parameters
     ----------
     f: float
         frequency
     '''
     wng = 1 / np.dot(hermitian(self.filter(f)), self.filter(f))
     return dB(wng, True)
Ejemplo n.º 7
0
    def front_back_ratio(self):
        '''
        return the front_back_ratio in TDB
        '''
        theta_array_0_90 = np.array_split(constants.get('angle_range'), 2)[0]
        theta_array_90_180 = np.array_split(constants.get('angle_range'), 2)[1]

        filts = self.filter
        gamma_0_half_pi = self.diffuse_noise_coherence(theta_array_0_90)
        gamma_half_pi_pi = self.diffuse_noise_coherence(theta_array_90_180)
        front_back_ratio = (filts.T.dot(gamma_0_half_pi).dot(filts)) / (
            filts.T.dot(gamma_half_pi_pi).dot(filts))
        return dB(front_back_ratio, True)
Ejemplo n.º 8
0
 def beam_pattern(self, f):
     '''
     Compute and Plot beampattern response for microphone array
     
     Parameters
     ----------
     f: float
         frequency
     '''
     omega = self.filter(f)
     steer_vector = self.steer_vector(f)
     response = np.squeeze(dB(np.abs(hermitian(steer_vector).dot(omega))))
     return response
Ejemplo n.º 9
0
    def performance(self):
        i = self.i_ell
        h = self.filter
        g = self.steer_vector()
        r_n = self.sound_field.noise_signal_correlation()
        r_x = self.sound_field.desired_signal_correlation()

        oSNR = h.T.dot(g).dot(r_x).dot(g.T).dot(h) / h.T.dot(r_n).dot(h)
        oSNR_dB = np.asscalar(dB(oSNR, True))

        nr_factor = r_n[0, 0] / (h.T.dot(r_n).dot(h))
        sigr_factor = r_x[0, 0] / (h.T.dot(g).dot(r_x).dot(g.T).dot(h))

        sigd_index = (
            (g.T.dot(h) - i).T.dot(r_x).dot(g.T.dot(h) - i)) / r_x[0, 0]

        performance_dict = {
            'array gain': (oSNR_dB - self.sound_field._iSNR.get('dB_value')),
            'noise reduction factor': np.asscalar(dB(nr_factor, True)),
            'signal reduction factor': dB(sigr_factor, True),
            'signal distortion index': dB(sigd_index, True)
        }
        return performance_dict
Ejemplo n.º 10
0
    def directivity(self, f):
        '''
        Directivity factor of microphone array
        note: python sinc function is sinc(pi*x) / pi*x

        Parameters
        ----------
        f: float
            frequency
        '''

        noise_cov = self.diffuse_noise_coherence(f)
        di = 1 / hermitian(self.filter(f)).dot(noise_cov).dot(self.filter(f))
        return dB(di, True)
Ejemplo n.º 11
0
    def snr_complex_method(self, f):
        '''
        averege method by real and imag decompostion
        '''
        TmpH1 = (np.real(self.observed_signal_gamma(f)) - self.isotropic_noise_coherence(f)) / \
                (np.real(np.dot(self.steer_vector(f, self.phi).reshape(self.M, 1),
                self.steer_vector(f, self.phi).conj().reshape(1,self.M))) - self.isotropic_noise_coherence(f))

        TmpH2 = np.imag(self.observed_signal_gamma(f)) / np.imag(
            np.dot(
                self.steer_vector(f, self.phi).reshape(self.M, 1),
                self.steer_vector(f, self.phi).conj().reshape(1, self.M)))

        [m_mat, n_mat] = np.meshgrid(np.arange(self.M), np.arange(self.M))
        idx = np.where((m_mat - n_mat) > 0)
        return dB(
            np.complex(
                np.sum(TmpH1[idx] + TmpH2[idx]) / self.M / (self.M - 1)))