Ejemplo n.º 1
0
def test_expansion2():
    sdfg = expansion2.to_sdfg()
    graph = sdfg.nodes()[0]
    kwargs = {
        'A': np.random.rand(M.get(), N.get()).astype(np.float64),
        'B': np.random.rand(M.get(), O.get()).astype(np.float64),
        'out1': np.ndarray((M.get(), N.get()), dtype=np.float64),
        'out2': np.ndarray((M.get(), O.get()), dtype=np.float64),
        'N': N,
        'M': M,
        'O': O
    }

    run(sdfg, graph, kwargs)
    out1 = kwargs['out1'].copy()
    out2 = kwargs['out2'].copy()

    kwargs['out1'].fill(0)
    kwargs['out2'].fill(0)

    expand_maps(sdfg, graph)
    run(sdfg, graph, kwargs)
    out3 = kwargs['out1'].copy()
    out4 = kwargs['out2'].copy()
    assert np.linalg.norm(out1) > 0.01
    assert np.allclose(out1, out3)
    assert np.allclose(out2, out4)
Ejemplo n.º 2
0
def test_p3(in_transient, out_transient):
    sdfg = reduction_test_3.to_sdfg()
    sdfg.apply_strict_transformations()
    state = sdfg.nodes()[0]
    A = np.random.rand(M.get(), N.get()).astype(np.float64)
    B = np.random.rand(M.get(), N.get()).astype(np.float64)
    C1 = np.zeros([N.get()], dtype=np.float64)
    C2 = np.zeros([N.get()], dtype=np.float64)
    C3 = np.zeros([N.get()], dtype=np.float64)

    csdfg = sdfg.compile()
    csdfg(A=A, B=B, C=C1, N=N, M=M)
    del csdfg

    expand_reduce(sdfg,
                  state,
                  create_in_transient=in_transient,
                  create_out_transient=out_transient)
    csdfg = sdfg.compile()
    csdfg(A=A, B=B, C=C2, N=N, M=M)
    del csdfg

    expand_maps(sdfg, state)
    fusion(sdfg, state)
    csdfg = sdfg.compile()
    csdfg(A=A, B=B, C=C3, N=N, M=M)
    del csdfg

    assert np.linalg.norm(C1) > 0.01
    assert np.allclose(C1, C2)
    assert np.allclose(C1, C3)
Ejemplo n.º 3
0
def test_quantitatively(sdfg, graph):

    A = np.random.rand(N.get()).astype(np.float64)
    B = np.random.rand(M.get()).astype(np.float64)
    C = np.random.rand(O.get()).astype(np.float64)
    out1_base = np.ndarray((N.get(), M.get()), np.float64)
    out2_base = np.ndarray((1), np.float64)
    out3_base = np.ndarray((N.get(), M.get(), O.get()), np.float64)
    out1 = np.ndarray((N.get(), M.get()), np.float64)
    out2 = np.ndarray((1), np.float64)
    out3 = np.ndarray((N.get(), M.get(), O.get()), np.float64)
    csdfg = sdfg.compile()
    csdfg(A=A,
          B=B,
          C=C,
          out1=out1_base,
          out2=out2_base,
          out3=out3_base,
          N=N,
          M=M,
          O=O)

    expand_reduce(sdfg, graph)
    expand_maps(sdfg, graph)
    subgraph = SubgraphView(graph, [node for node in graph.nodes()])
    assert SubgraphFusion.match(sdfg, subgraph) == True
    fusion(sdfg, graph)
    sdfg.validate()
    csdfg = sdfg.compile()
    csdfg(A=A, B=B, C=C, out1=out1, out2=out2, out3=out3, N=N, M=M, O=O)

    assert np.allclose(out1, out1_base)
    assert np.allclose(out2, out2_base)
    assert np.allclose(out3, out3_base)
    print('PASS')
Ejemplo n.º 4
0
def test_2fuse():
    sdfg = softmax.to_sdfg()
    sdfg._name = 'softmax_2part'
    sdfg.apply_strict_transformations()
    X_in = np.random.rand(H.get(), B.get(), SN.get(),
                          SM.get()).astype(np.float32)

    csdfg = sdfg.compile()
    res1 = csdfg(X_in=X_in, H=H, B=B, SN=SN, SM=SM)

    subgraph = get_partition(sdfg, sdfg.nodes()[0])
    expand_reduce(sdfg, sdfg.nodes()[0], subgraph)
    expand_maps(sdfg, sdfg.nodes()[0], subgraph)
    fusion(sdfg, sdfg.nodes()[0], subgraph)

    csdfg = sdfg.compile()
    res2 = csdfg(X_in=X_in, H=H, B=B, SN=SN, SM=SM)

    assert np.allclose(res1, res2)
    print("PASS")
    return
Ejemplo n.º 5
0
def test_1fuse():
    sdfg = softmax.to_sdfg()
    sdfg._name = 'softmax_fused'
    sdfg.apply_strict_transformations()
    X_in = np.random.rand(H.get(), B.get(), SN.get(),
                          SM.get()).astype(np.float32)

    csdfg = sdfg.compile()
    res1 = csdfg(X_in=X_in, H=H, B=B, SN=SN, SM=SM)

    expand_reduce(sdfg, sdfg.nodes()[0])
    expand_maps(sdfg, sdfg.nodes()[0])
    fusion(sdfg, sdfg.nodes()[0])

    #sdfg.specialize({'SM':SM})
    csdfg = sdfg.compile()
    res2 = csdfg(X_in=X_in, H=H, B=B, SN=SN, SM=SM)

    print(np.linalg.norm(res1))
    print(np.linalg.norm(res2))
    assert np.allclose(res1, res2)
    print("PASS")
    return
Ejemplo n.º 6
0
def test_1fuse():
    sdfg = softmax.to_sdfg()
    sdfg.name = 'softmax_fused'
    sdfg.simplify()
    X_in = np.random.rand(H.get(), B.get(), SN.get(), SM.get()).astype(np.float32)

    csdfg = sdfg.compile()
    res1 = csdfg(X_in=X_in, H=H, B=B, SN=SN, SM=SM)
    del csdfg

    expand_reduce(sdfg, sdfg.nodes()[0])
    expand_maps(sdfg, sdfg.nodes()[0])
    fusion(sdfg, sdfg.nodes()[0])

    csdfg = sdfg.compile()
    res2 = csdfg(X_in=X_in, H=H, B=B, SN=SN, SM=SM)
    del csdfg

    print(np.linalg.norm(res1))
    print(np.linalg.norm(res2))
    assert np.allclose(res1, res2)
    print("PASS")
    return
Ejemplo n.º 7
0
def test_qualitatively(sdfg, graph):
    expand_reduce(sdfg, graph)
    expand_maps(sdfg, graph)
    fusion(sdfg, graph)
    sdfg.validate()
    print("PASS")