Ejemplo n.º 1
0
  def export_ops(self, name):
    """Exports ops to collections."""
    self._name = name
    self._exported_ops = {}
    ops = {}
    ops[util.with_prefix(self._name, 'clfs_padd')] = self._padding
    ops[util.with_prefix(self._name, 'last_step')] = self._last_step
    for key, preds in self._predictions.items():
      ops[util.with_prefix(self._name, key)] = preds
    self._exported_ops.update({'predictions': [f'{self._name}/{k}' for k in self._predictions]})
    for key, loss in self._losses.items():
      ops[util.with_prefix(self._name, key)] = loss
    for key, loss in self._l2_losses.items():
      ops[util.with_prefix(self._name, key)] = loss
    self._exported_ops.update({'losses': [f'{self._name}/{k}' for k in self._losses.keys()],
      'l2_losses': [f'{self._name}/{k}' for k in self._l2_losses.keys()]})
    ops.update({f'{name}/cur_epoch': self._cur_epoch,
      f'{name}/global_step': self._global_step})
    self._exported_ops.update({'epoch_and_step': [f'{name}/cur_epoch', f'{name}/global_step']})
    if self._is_training:
      for key, train_op in self._train_ops.items():
        ops[key] = train_op
      self._exported_ops.update({'train_ops': self._train_ops.keys()})
      ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update,
        new_val=self._new_val, update_epoch=self._update_epoch)
      
    for name, op in ops.items():
      tf.add_to_collection(name, op)

    self._initial_state_name = util.with_prefix(self._name, "initial")
    self._final_state_name = util.with_prefix(self._name, "final")
    util.export_state_tuples(self._initial_state, self._initial_state_name)
    util.export_state_tuples(self._final_state, self._final_state_name)
Ejemplo n.º 2
0
 def export_ops(self, name):
     """Exports ops to collections."""
     self._name = name
     ops = {util.with_prefix(self._name, "cost"): self._cost}
     if self._is_training:
         ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update)
     for name, op in ops.items():
         tf.add_to_collection(name, op)
     self._final_state_name = util.with_prefix(self._name, "final")
     util.export_state_tuples(self._final_state, self._final_state_name)
Ejemplo n.º 3
0
 def export_ops(self, name):
   """Exports ops to collections."""
   self._name = name
   ops = {util.with_prefix(self._name, "cost"): self._cost, util.with_prefix(self._name, "probabilities"): self._probabilities}
   if self._is_training:
     ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update)
     if self._rnn_params:
       ops.update(rnn_params=self._rnn_params)
   for name, op in ops.items():
     tf.add_to_collection(name, op)
   self._initial_state_name = util.with_prefix(self._name, "initial")
   self._final_state_name = util.with_prefix(self._name, "final")
   util.export_state_tuples(self._initial_state, self._initial_state_name)
   util.export_state_tuples(self._final_state, self._final_state_name)
Ejemplo n.º 4
0
 def export_ops(self, name):
   """Exports ops to collections."""
   self._name = name
   ops = {util.with_prefix(self._name, "cost"): self._cost}
   if self._is_training:
     ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update)
     if self._rnn_params:
       ops.update(rnn_params=self._rnn_params)
   for name, op in ops.items():
     tf.add_to_collection(name, op)
   self._initial_state_name = util.with_prefix(self._name, "initial")
   self._final_state_name = util.with_prefix(self._name, "final")
   util.export_state_tuples(self._initial_state, self._initial_state_name)
   util.export_state_tuples(self._final_state, self._final_state_name)
Ejemplo n.º 5
0
 def export_ops(self, name):
     """Exports ops to collections. The collection is managed by tensorflow"""
     self._name = name
     ops = {util.with_prefix(self._name, "cost"): self._cost}
     if self._is_training:
         ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update)
         if self._rnn_params:
             ops.update(rnn_params=self._rnn_params)
     for n, op in ops.items():
         tf.add_to_collection(n, op)
     self._initial_state_name = util.with_prefix(self._name, 'initial')
     self._final_state_name = util.with_prefix(self._name, 'final')
     util.export_state_tuples(self._initial_state, self._initial_state_name)
     util.export_state_tuples(self._final_state, self._final_state_name)
Ejemplo n.º 6
0
 def export_ops(self, name):
   """Exports ops to collections."""
   self._name = name
   ops = {util.with_prefix(self._name, "cost"): self._cost}
   if self._is_training:
     ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update, params_size=self._params_size)
     if FLAGS.num_gpus:
         ops.update(memory_use=self._memory_use)
     if self._rnn_params:
       ops.update(rnn_params=self._rnn_params)
   for name, op in ops.items():
     tf.add_to_collection(name, op)
   self._initial_state_name = util.with_prefix(self._name, "initial")
   self._final_state_name = util.with_prefix(self._name, "final")
   util.export_state_tuples(self._initial_state, self._initial_state_name)
   util.export_state_tuples(self._final_state, self._final_state_name)
Ejemplo n.º 7
0
 def export_ops(self, name):
     self._name = name
     ops = {util.with_prefix(self._name, 'cost'): self._cost}
     tf.add_to_collection(util.with_prefix(self._name, 'logits'),
                          self._logits)
     if self._is_training:
         ops.update(lr=self._lr,
                    new_lr=self._new_lr,
                    lr_update=self._lr_update)
         if self._rnn_params:
             ops.update(rnn_params=self._rnn_params)
     for name, op in ops.items():
         tf.add_to_collection(name, op)
     self._initial_state_name = util.with_prefix(self._name, 'initial')
     self._final_state_name = util.with_prefix(self._name, 'final')
     util.export_state_tuples(self._initial_state, self._initial_state_name)
     util.export_state_tuples(self._final_state, self._final_state_name)
Ejemplo n.º 8
0
 def export_ops(self, name):
     """Exports ops to collections."""
     self._name = name
     ops = {util.with_prefix(self._name, 'cost'): self._cost}
     if self._is_training:
         ops.update(lr=self._lr,
                    new_lr=self._new_lr,
                    lr_update=self._lr_update)
         if self._rnn_params:
             ops.update(rnn_params=self._rnn_params)
     if self.model_type == 'test':
         ops.update(logits=self.logits, y=self.y)
     for name, op in ops.items():
         tf.add_to_collection(name, op)
     self._initial_state_name = util.with_prefix(self._name, 'initial')
     self._final_state_name = util.with_prefix(self._name, 'final')
     util.export_state_tuples(self._initial_state, self._initial_state_name)
     util.export_state_tuples(self._final_state, self._final_state_name)
Ejemplo n.º 9
0
 def export_ops(self, name):
     """Exports ops to collections."""
     self._name = name
     ops = {util.with_prefix(self._name, "cost"): self._cost,
            util.with_prefix(self._name, "kl_div"): self._kl_loss,
            util.with_prefix(self._name, "input_data"): self._input_data,
            util.with_prefix(self._name, "output"): self._output,
            util.with_prefix(self._name, "targets"): self._targets,
            }
     
     if self._is_training:
         ops.update(lr=self._lr, new_lr=self._new_lr, lr_update=self._lr_update)
         
     for name, op in ops.items():
         tf.add_to_collection(name, op)
         
     self._initial_state_name = util.with_prefix(self._name, "initial")
     self._final_state_name = util.with_prefix(self._name, "final")
     util.export_state_tuples(self._initial_state, self._initial_state_name)
     util.export_state_tuples(self._final_state, self._final_state_name)
Ejemplo n.º 10
0
    def export_ops(self, name):
        """Exports ops to collections."""
        self._name = name
        ops = {
            util.with_prefix(self._name, "cost"): self._cost,
            util.with_prefix(self._name, "kl_div"): self._kl_loss,
            util.with_prefix(self._name, "input_data"): self._input_data,
            util.with_prefix(self._name, "output"): self._output,
            util.with_prefix(self._name, "targets"): self._targets,
        }

        if self._is_training:
            ops.update(lr=self._lr,
                       new_lr=self._new_lr,
                       lr_update=self._lr_update)

        for name, op in ops.items():
            tf.add_to_collection(name, op)

        self._initial_state_name = util.with_prefix(self._name, "initial")
        self._final_state_name = util.with_prefix(self._name, "final")
        util.export_state_tuples(self._initial_state, self._initial_state_name)
        util.export_state_tuples(self._final_state, self._final_state_name)
Ejemplo n.º 11
0
from __future__ import absolute_import