break print("Cascade : ", cascade) # Author dict creation if cascade: print("LastPublisher dict creation...") else: print("Author dict creation...") Author = util.get_authors(data_path) # GET LAMBDAS MUS AND GRAPH print("Getting lambdas and mus...") Rtweet, Rrtweet, total_time = util.get_activity(data_path, cascade, Author, divide_by_time=True, retweeted=False) print("Getting leaders and followers...") LeadGraph, FollowGraph = util.graph_from_trace(data_path, cascade, Author) # list of users Lusers = list(Rtweet.keys()) Lusers.sort() N = len(Lusers) # ## 3. Performance evaluation # From the Linear System solution, one realises that it is necessary to first populate the matrices $A$ and $C$, which are relevant for any solution process of the system. # **Note** We will keep in memory Dictionaries, with Key the userid and value the list of positive matrix entries. # ### Build matrix A in sparse format
for line in open(psi_star): # oursin line = line.split() user, psi = int(line[0]), float(line[1]) if user in Psi['real']: Psi['star'][user] = psi del user, psi # load authors print("Getting authors...") Author = util.get_authors(trace_path) # load activity print("Getting activity...") Lambda, Mu, total_time = util.get_activity(trace_path, False, Author, divide_by_time=True, retweeted=False) del Mu, total_time Lambda = {u: Lambda[u] for u in Psi['real']} # load star graph print("Getting follow graph (star)...") FollowGraph = dict() _, FollowGraph['star'] = util.graph_from_trace(trace_path, False, Author) del _, Author FollowGraph['star'] = { u: {v for v in FollowGraph['star'][u] if v in Psi['real']} for u in Psi['real'] }