def tangent_lines(self, p): """Tangent lines between `p` and the ellipse. If `p` is on the ellipse, returns the tangent line through point `p`. Otherwise, returns the tangent line(s) from `p` to the ellipse, or None if no tangent line is possible (e.g., `p` inside ellipse). Parameters ========== p : Point Returns ======= tangent_lines : list with 1 or 2 Lines Raises ====== NotImplementedError Can only find tangent lines for a point, `p`, on the ellipse. See Also ======== sympy.geometry.point.Point, sympy.geometry.line.Line Examples ======== >>> from sympy import Point, Ellipse >>> e1 = Ellipse(Point(0, 0), 3, 2) >>> e1.tangent_lines(Point(3, 0)) [Line(Point(3, 0), Point(3, -12))] >>> # This will plot an ellipse together with a tangent line. >>> from sympy.plotting.pygletplot import PygletPlot as Plot >>> from sympy import Point, Ellipse >>> e = Ellipse(Point(0,0), 3, 2) >>> t = e.tangent_lines(e.random_point()) >>> p = Plot() >>> p[0] = e # doctest: +SKIP >>> p[1] = t # doctest: +SKIP """ if self.encloses_point(p): return [] if p in self: delta = self.center - p rise = (self.vradius ** 2)*delta.x run = -(self.hradius ** 2)*delta.y p2 = Point(simplify(p.x + run), simplify(p.y + rise)) return [Line(p, p2)] else: if len(self.foci) == 2: f1, f2 = self.foci maj = self.hradius test = (2*maj - Point.distance(f1, p) - Point.distance(f2, p)) else: test = self.radius - Point.distance(self.center, p) if test.is_number and test.is_positive: return [] # else p is outside the ellipse or we can't tell. In case of the # latter, the solutions returned will only be valid if # the point is not inside the ellipse; if it is, nan will result. x, y = Dummy('x'), Dummy('y') eq = self.equation(x, y) dydx = idiff(eq, y, x) slope = Line(p, Point(x, y)).slope tangent_points = solve([slope - dydx, eq], [x, y]) # handle horizontal and vertical tangent lines if len(tangent_points) == 1: assert tangent_points[0][ 0] == p.x or tangent_points[0][1] == p.y return [Line(p, p + Point(1, 0)), Line(p, p + Point(0, 1))] # others return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]
def tangent_lines(self, p): """Tangent lines between `p` and the ellipse. If `p` is on the ellipse, returns the tangent line through point `p`. Otherwise, returns the tangent line(s) from `p` to the ellipse, or None if no tangent line is possible (e.g., `p` inside ellipse). Parameters ---------- p : Point Returns ------- tangent_lines : list with 1 or 2 Lines Raises ------ NotImplementedError Can only find tangent lines for a point, `p`, on the ellipse. See Also -------- Point Line Examples -------- >>> from sympy import Point, Ellipse >>> e1 = Ellipse(Point(0, 0), 3, 2) >>> e1.tangent_lines(Point(3, 0)) [Line(Point(3, 0), Point(3, -12))] >>> # This will plot an ellipse together with a tangent line. >>> from sympy import Point, Ellipse, Plot >>> e = Ellipse(Point(0,0), 3, 2) >>> t = e.tangent_lines(e.random_point()) # doctest: +SKIP >>> p = Plot() # doctest: +SKIP >>> p[0] = e # doctest: +SKIP >>> p[1] = t # doctest: +SKIP """ from sympy import solve if self.encloses_point(p): return [] if p in self: rise = (self.vradius ** 2) * (self.center[0] - p[0]) run = (self.hradius ** 2) * (p[1] - self.center[1]) p2 = Point(simplify(p[0] + run), simplify(p[1] + rise)) return [Line(p, p2)] else: if len(self.foci) == 2: f1, f2 = self.foci maj = self.hradius test = 2 * maj - Point.distance(f1, p) - Point.distance(f2, p) else: test = self.radius - Point.distance(self.center, p) if test.is_number and test.is_positive: return [] # else p is outside the ellipse or we can't tell. In case of the # latter, the solutions returned will only be valid if # the point is not inside the ellipse; if it is, nan will result. x, y = Dummy("x"), Dummy("y") eq = self.equation(x, y) dydx = idiff(eq, y, x) slope = Line(p, Point(x, y)).slope tangent_points = solve([w.as_numer_denom()[0] for w in [slope - dydx, eq]], [x, y]) # handle horizontal and vertical tangent lines if len(tangent_points) == 1: assert tangent_points[0][0] == p[0] or tangent_points[0][1] == p[1] return [Line(p, Point(p[0] + 1, p[1])), Line(p, Point(p[0], p[1] + 1))] # others return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]
def tangent_lines(self, p): """Tangent lines between `p` and the ellipse. If `p` is on the ellipse, returns the tangent line through point `p`. Otherwise, returns the tangent line(s) from `p` to the ellipse, or None if no tangent line is possible (e.g., `p` inside ellipse). Parameters ---------- p : Point Returns ------- tangent_lines : list with 1 or 2 Lines Raises ------ NotImplementedError Can only find tangent lines for a point, `p`, on the ellipse. See Also -------- Point Line Examples -------- >>> from sympy import Point, Ellipse >>> e1 = Ellipse(Point(0, 0), 3, 2) >>> e1.tangent_lines(Point(3, 0)) [Line(Point(3, 0), Point(3, -12))] >>> # This will plot an ellipse together with a tangent line. >>> from sympy import Point, Ellipse, Plot >>> e = Ellipse(Point(0,0), 3, 2) >>> t = e.tangent_lines(e.random_point()) # doctest: +SKIP >>> p = Plot() # doctest: +SKIP >>> p[0] = e # doctest: +SKIP >>> p[1] = t # doctest: +SKIP """ if self.encloses_point(p): return [] if p in self: rise = (self.vradius ** 2)*(self.center[0] - p[0]) run = (self.hradius ** 2)*(p[1] - self.center[1]) p2 = Point(simplify(p[0] + run), simplify(p[1] + rise)) return [Line(p, p2)] else: if len(self.foci) == 2: f1, f2 = self.foci maj = self.hradius test = (2*maj - Point.distance(f1, p) - Point.distance(f2, p)) else: test = self.radius - Point.distance(self.center, p) if test.is_number and test.is_positive: return [] # else p is outside the ellipse or we can't tell. In case of the # latter, the solutions returned will only be valid if # the point is not inside the ellipse; if it is, nan will result. x, y = Dummy('x'), Dummy('y') eq = self.equation(x, y) dydx = idiff(eq, y, x) slope = Line(p, Point(x, y)).slope tangent_points = solve([slope - dydx, eq], [x, y]) # handle horizontal and vertical tangent lines if len(tangent_points) == 1: assert tangent_points[0][0] == p[0] or tangent_points[0][1] == p[1] return [Line(p, Point(p[0]+1, p[1])), Line(p, Point(p[0], p[1]+1))] # others return [Line(p, tangent_points[0]), Line(p, tangent_points[1])]