import matplotlib.pyplot as plt AUSTRALIAN_CITIES = [ "Sydney", "Melbourne", "Brisbane", "Perth", "Adelaide", ] FOREIGN_CITIES = [ "Auckland", "Hong Kong", "Singapore", "Kuala Lumpur", "Tokyo" ] if __name__ == "__main__": # Load Data combined = util.load_cdf("Visualization/international.nc") # Setup the graph fig, axes = plt.subplots(nrows=len(AUSTRALIAN_CITIES), ncols=len(FOREIGN_CITIES)) plt.rcParams.update({"font.size": 14}) # Plot each incoming/outgoing pair for xx, incoming in enumerate(AUSTRALIAN_CITIES): for yy, outgoing in enumerate(FOREIGN_CITIES): test = combined.sel(AustralianPort=incoming, ForeignPort=outgoing)[["PaxIn", "PaxOut"]] test.to_dataframe().plot(ax=axes[xx, yy], legend=False) axes[xx, yy].legend(loc="upper right", fontsize=10)
import util import numpy as np import datetime import matplotlib.pyplot as plt import calendar AUSTRALIAN_CITIES = ["SYD", "MEL", "BNE", "PER", "ADL", "DRW"] if __name__ == "__main__": combined = util.load_cdf("Visualization/domestic.nc") years = [x for x in range(2004, 2020)] months = [x for x in range(1, 13)] # We need the format of the data to be in a 2D-array format # Each column is a month, while each row is a year data = [ np.zeros(shape=(len(years), len(months))) for i in range(len(AUSTRALIAN_CITIES)) ] # Generate the dataset # Each city gets one array for i, city in enumerate(AUSTRALIAN_CITIES): city_data_origin = combined.sel(Origin=city) try: city_data_destination = combined.sel(Destination=city) for xx, year in enumerate(years): for yy, month in enumerate(months): date = datetime.datetime(year, month, 1) monthly_total1 = city_data_origin.sel(Month=date).sum( ["Destination"])