def parseData(strFileNameTrainFeatures, strFileNameTrainTimes): # print "---------------------------------------------------------------------" print 'Parsing Data' print ' -> Reading Train Features :', strFileNameTrainFeatures instIds, train_features = readfile_data(strFileNameTrainFeatures) train_dict_features, train_list_names_features = makeDict(instIds, train_features) train_array_features = train_features print ' -> Reading Train Times :', strFileNameTrainTimes instIds, train_times = readfile_data(strFileNameTrainTimes) train_dict_times, train_list_names_times = makeDict(instIds, train_times) train_array_features_orig = np.array(train_array_features) nAlgs = len(train_dict_times[train_list_names_times[0]]) nFeatures = len(train_dict_features[train_list_names_features[1]]) print print 'Basic Information on Data: ' print ' --> Number of Algorithms :', nAlgs print ' --> Number of Features :', nFeatures print ' --> Number of Train-Feature-vectors :', len(train_dict_features) print ' --> Number of Train-Time-vectors :', len(train_dict_times) # print "---------------------------------------------------------------------" X_train = [] Y_train = [] for idTrainInstance in train_list_names_features: X_train += [train_dict_features[idTrainInstance]] Y_train += [train_dict_times[idTrainInstance]] X_train = np.array(X_train) Y_train = np.array(Y_train) return X_train, Y_train
def parseData(strFileNameTestFeatures, strFileNameTestTimes): # print "---------------------------------------------------------------------" print 'Parsing Data' print ' -> Reading Test Features :', strFileNameTestFeatures instIds, test_features = readfile_data(strFileNameTestFeatures) test_dict_features, test_list_names_features = makeDict(instIds, test_features) print ' -> Reading Test Times :', strFileNameTestTimes instIds, test_times = readfile_data(strFileNameTestTimes) test_dict_times, test_list_names_times = makeDict(instIds, test_times) nAlgs = len(test_dict_times[test_list_names_times[0]]) nFeatures = len(test_dict_features[test_list_names_features[0]]) print print ' Basic Information on Data: ' print ' --> Number of Algorithms :', nAlgs print ' --> Number of Features :', nFeatures print ' --> Number of Test-Feature-vectors :', len(test_dict_features) print ' --> Number of Test-Time-vectors :', len(test_dict_times) # print "---------------------------------------------------------------------" X_test = [] Y_test = [] for idTestInstance in test_list_names_features: X_test += [test_dict_features[idTestInstance]] Y_test += [test_dict_times[idTestInstance]] X_test = np.array(X_test) Y_test = np.array(Y_test) return X_test, Y_test
def parseData(strFileNameTestFeatures, strFileNameTestTimes): # print "---------------------------------------------------------------------" print('Parsing Data') print(' -> Reading Test Features :', strFileNameTestFeatures) instIds, test_features = readfile_data(strFileNameTestFeatures) test_dict_features, test_list_names_features = makeDict( instIds, test_features) print(' -> Reading Test Times :', strFileNameTestTimes) instIds, test_times = readfile_data(strFileNameTestTimes) test_dict_times, test_list_names_times = makeDict(instIds, test_times) nAlgs = len(test_dict_times[test_list_names_times[0]]) nFeatures = len(test_dict_features[test_list_names_features[0]]) print() print(' Basic Information on Data: ') print(' --> Number of Algorithms :', nAlgs) print(' --> Number of Features :', nFeatures) print(' --> Number of Test-Feature-vectors :', len(test_dict_features)) print(' --> Number of Test-Time-vectors :', len(test_dict_times)) # print "---------------------------------------------------------------------" X_test = [] Y_test = [] for idTestInstance in test_list_names_features: X_test += [test_dict_features[idTestInstance]] Y_test += [test_dict_times[idTestInstance]] X_test = np.array(X_test) Y_test = np.array(Y_test) return X_test, Y_test
def parseData(strFileNameTrainFeatures, strFileNameTrainTimes): # print "---------------------------------------------------------------------" print ('Parsing Data') print (' -> Reading Train Features :', strFileNameTrainFeatures) instIds, train_features = readfile_data(strFileNameTrainFeatures) train_dict_features, train_list_names_features = makeDict(instIds, train_features) train_array_features = train_features print (' -> Reading Train Times :', strFileNameTrainTimes) instIds, train_times = readfile_data(strFileNameTrainTimes) train_dict_times, train_list_names_times = makeDict(instIds, train_times) train_array_features_orig = np.array(train_array_features) nAlgs = len(train_dict_times[train_list_names_times[0]]) nFeatures = len(train_dict_features[train_list_names_features[1]]) print() print ('Basic Information on Data: ') print (' --> Number of Algorithms :', nAlgs) print (' --> Number of Features :', nFeatures) print (' --> Number of Train-Feature-vectors :', len(train_dict_features)) print (' --> Number of Train-Time-vectors :', len(train_dict_times)) # print "---------------------------------------------------------------------" X_train = [] Y_train = [] for idTrainInstance in train_list_names_features: X_train += [train_dict_features[idTrainInstance]] Y_train += [train_dict_times[idTrainInstance]] X_train = np.array(X_train) Y_train = np.array(Y_train) return X_train, Y_train