Ejemplo n.º 1
0
def plotDay(config, timestamps, realY, predictY):
    assert len(realY) == len(predictY)
    realMeans, realSd = getMeanSdDay(config, realY)
    predictedMeans, predictedSd = getMeanSdDay(config, predictY)
    x1 = list(range(96))

    plt.plot(x1, realMeans, label="actual", color="green")
    plt.fill_between(
        x1, realMeans - realSd * 0.5, realMeans + realSd * 0.5, color="green", alpha=0.5
    )
    plt.plot(x1, predictedMeans, label="predict", color="orange")
    plt.fill_between(
        x1,
        predictedMeans - predictedSd * 0.5,
        predictedMeans + predictedSd * 0.5,
        color="orange",
        alpha=0.5,
    )

    time, tick = makeTick(timestamps[:96], "%H:%M")
    plt.xticks(tick, time, rotation=20)
    plt.xlabel("Time of Day")
    plt.ylabel("Average Power consumption (kW)")
    plt.legend()
    plt.tight_layout()
    plt.show()
Ejemplo n.º 2
0
def plotEcart(
    train_y,
    train_predict_y,
    val_y,
    val_predict_y,
    test_y,
    test_predict_y,
    timestamps,
    config,
):
    time, tick = makeTick(timestamps)

    y1, y1b = [], []
    for i in range(
        min((len(train_predict_y) // config.OUTPUT_SIZE) - 1, config.NB_PLOT)
    ):
        y1.extend(train_y[i * config.OUTPUT_SIZE])
        y1b.extend(train_predict_y[i * config.OUTPUT_SIZE])

    y2, y2b = [], []
    for i in range(min((len(val_predict_y) // config.OUTPUT_SIZE) - 1, config.NB_PLOT)):
        y2.extend(val_y[i * config.OUTPUT_SIZE])
        y2b.extend(val_predict_y[i * config.OUTPUT_SIZE])

    y3, y3b = [], []
    for i in range(
        min((len(test_predict_y) // config.OUTPUT_SIZE) - 1, config.NB_PLOT)
    ):
        y3.extend(test_y[i * config.OUTPUT_SIZE])
        y3b.extend(test_predict_y[i * config.OUTPUT_SIZE])

    y1, y1b, y2, y2b, y3, y3b = (
        np.array(y1),
        np.array(y1b),
        np.array(y2),
        np.array(y2b),
        np.array(y3),
        np.array(y3b),
    )

    y1 = [y1[i] - y1b[i] for i in range(len(y1))]
    y2 = [y2[i] - y2b[i] for i in range(len(y2))]
    y3 = [y3[i] - y3b[i] for i in range(len(y3))]

    x1 = np.array(list(range(len(y1))))
    x2 = np.array(list(range(len(y2)))) + len(x1)
    x3 = np.array(list(range(len(y3)))) + len(x1) + len(x2)
    plt.plot(x1, y1, label="train", color="green")
    plt.plot(x2, y2, label="validation", color="blue")
    plt.plot(x3, y3, label="test", color="orange")
    # plt.xticks(tick, time, rotation=20)
    plt.xlabel("Time")
    plt.ylabel("Difference (kW)")
    plt.legend()
    plt.savefig(outputFolder + "/difference.png")
    plt.show()
Ejemplo n.º 3
0
def plotPart(timestamps, real):
    time, tick = makeTick(timestamps, "%H:%M")

    x1 = list(range(len(real)))

    plt.plot(x1, real, label="house load", color="green")

    plt.xticks(tick, time, rotation=20)
    plt.xlabel("Time on Day " + timestamps[0].strftime("%m-%d"))
    plt.ylabel("Power consumption (kW)")
    plt.legend()
    plt.tight_layout()
    plt.show()
Ejemplo n.º 4
0
def plotPredictionPart(config, real, predicted, nameOfSet, timestamps, name):
    time, tick = makeTick(timestamps, "%H:%M")
    x1 = list(range(len(real)))

    plt.plot(x1, real, label="actual of " + nameOfSet, color="green")
    plt.plot(x1, predicted, label="predicted of " + nameOfSet, color="orange")

    plt.xticks(tick, time, rotation=20)
    plt.xlabel("Time")
    plt.ylabel("Power consumption (kW)")
    plt.legend()
    plt.tight_layout()
    plt.savefig(config.OUTPUT_FOLDER + "/prediction_part-" + name + ".png")
    plt.show()
Ejemplo n.º 5
0
def plotSets(timestamps, train, validation, test):
    time, tick = makeTick(timestamps)

    x1 = range(len(train))
    x2 = range(len(train), len(train) + len(validation))
    x3 = range(len(train) + len(validation), len(timestamps))
    plt.plot(x1, train, label="train set", color="green")
    plt.plot(x2, validation, label="validation set", color="blue")
    plt.plot(x3, test, label="test set", color="red")
    plt.xticks(tick, time, rotation=20)
    plt.xlabel("Time")
    plt.ylabel("Power consumption (kW)")
    plt.legend()
    plt.tight_layout()
    plt.show()
Ejemplo n.º 6
0
def plot_multiple_days(config, loadConfig, test, predicts, timestamps):
    predicts = get_following_days(config, predicts)

    plt.plot(range(len(test)), test, label="test set")
    label = "LSTM lb=" + str(loadConfig.LOOK_BACK)
    diff = max(loadConfig.LOOK_BACK, loadConfig.OUTPUT_SIZE) - min(
        loadConfig.LOOK_BACK, loadConfig.OUTPUT_SIZE
    )
    plt.plot(range(loadConfig.LOOK_BACK, len(test) - diff), predicts, label=label)
    time, tick = makeTick(timestamps)
    plt.xticks(tick, time, rotation=20)
    plt.xlabel("Time")
    plt.ylabel("Power (kW)")
    plt.legend()
    plt.tight_layout()
    plt.show()
Ejemplo n.º 7
0
def plotPredictionPartMult(config, real, allPredicted, nameOfSet, timestamps, name):
    time, tick = makeTick(timestamps, "%H:%M")
    x1 = np.array(list(range(len(real))))
    mark = [allPredicted[i][0] for i in range(config.TIME_PER_DAY)]
    plt.plot(x1, real, "o-", label="actual " + nameOfSet, color="green")
    plt.plot(x1, mark, "x")
    for i in range(config.TIME_PER_DAY):
        plt.plot(x1 + i, allPredicted[i], linewidth=0.4)
    # plt.xticks(tick, time, rotation=20)
    plt.xlabel("Time")
    plt.ylabel("Power consumption (kW)")
    plt.xlim(right=25)
    plt.legend()
    plt.tight_layout()
    plt.savefig(config.OUTPUT_FOLDER + "/prediction_all-" + name + ".png")
    plt.show()
Ejemplo n.º 8
0
def plotInputDay(df, timestamps, config):
    realMeans, realSd = getMeanSdDay(config, df)
    x1 = list(range(96))

    plt.plot(x1, realMeans, label="mean", color="green")
    plt.fill_between(
        x1, realMeans - realSd * 0.5, realMeans + realSd * 0.5, color="green", alpha=0.5
    )

    time, tick = makeTick(timestamps[:96], "%H:%M")
    plt.xticks(tick, time, rotation=20)
    plt.xlabel("Time of Day")
    plt.ylabel("Average Power consumption (kW)")
    plt.legend()
    plt.tight_layout()
    plt.show()
Ejemplo n.º 9
0
def plot_baselines(config, train, test, timestamps):
    plt.plot(range(len(test)), test, label="test set")
    plt.plot(range(len(test)),
             predictMean(config, train, test),
             label="mean prediction")
    plt.plot(range(1, len(test)),
             test[0:-1],
             label="next value persistence model")
    time, tick = makeTick(timestamps)
    plt.xticks(tick, time, rotation=20)
    plt.xlabel("Time")
    plt.ylabel("Power (kW)")
    plt.legend()
    plt.tight_layout()
    plt.savefig(config.OUTPUT_FOLDER + "/plot_baselines.png")
    plt.show()
Ejemplo n.º 10
0
def plotDayBaseline(config, timestamps, realY, predictY):
    timestamps_per_day = get_timestamps_per_day(config)
    realMeans, realSd = getMeanSdDayBaseline(config, realY)
    x1 = list(range(timestamps_per_day))

    plt.plot(x1, realMeans, label="actual", color="green")
    plt.fill_between(x1,
                     realMeans - realSd * 0.5,
                     realMeans + realSd * 0.5,
                     color="green",
                     alpha=0.5)
    plt.plot(x1, predictY, label="predict Baseline", color="orange")

    time, tick = makeTick(timestamps[:timestamps_per_day], "%H:%M")
    plt.xticks(tick, time, rotation=20)
    plt.xlabel("Time of Day")
    plt.ylabel("Average Power consumption (kW)")
    plt.legend()
    plt.tight_layout()
    plt.savefig(config.OUTPUT_FOLDER + "/plotDayBaseline.png")
    plt.show()
Ejemplo n.º 11
0
def plotPrediction(
    train_y,
    train_predict_y,
    val_y,
    val_predict_y,
    test_y,
    test_predict_y,
    timestamps,
    config,
):
    y1, y1b = [], []
    time = []

    for i in range(
        min((len(train_predict_y) // config.OUTPUT_SIZE) - 1, config.NB_PLOT)
    ):
        y1.extend(train_y[i * config.OUTPUT_SIZE])
        y1b.extend(train_predict_y[i * config.OUTPUT_SIZE])
        time.append(timestamps[i * config.OUTPUT_SIZE])

    y2, y2b = [], []
    for i in range(min((len(val_predict_y) // config.OUTPUT_SIZE) - 1, config.NB_PLOT)):
        y2.extend(val_y[i * config.OUTPUT_SIZE])
        y2b.extend(val_predict_y[i * config.OUTPUT_SIZE])
        time.append(timestamps[len(train_predict_y) + i * config.OUTPUT_SIZE])

    y3, y3b = [], []
    for i in range(
        min((len(test_predict_y) // config.OUTPUT_SIZE) - 1, config.NB_PLOT)
    ):
        y3.extend(test_y[i * config.OUTPUT_SIZE])
        y3b.extend(test_predict_y[i * config.OUTPUT_SIZE])
        time.append(
            timestamps[
                len(train_predict_y) + len(val_predict_y) + i * config.OUTPUT_SIZE
            ]
        )

    y1, y1b, y2, y2b, y3, y3b = (
        np.array(y1),
        np.array(y1b),
        np.array(y2),
        np.array(y2b),
        np.array(y3),
        np.array(y3b),
    )
    x1 = np.array(list(range(len(y1))))
    x2 = np.array(list(range(len(y2)))) + len(x1)
    x3 = np.array(list(range(len(y3)))) + len(x1) + len(x2)

    time, tick = makeTick(time, "%H:%M")
    tick = [i * config.TIME_PER_DAY for i in tick]
    plt.plot(x1, y1, label="actual - train", color="green")
    plt.plot(x1, y1b, label="predict - train", color="orange")
    plt.plot(x2, y2, label="actual - val", color="blue")
    plt.plot(x2, y2b, label="predict - val", color="red")
    plt.plot(x3, y3, label="actual - test", color="green")
    plt.plot(x3, y3b, label="predict - test", color="orange")
    plt.xticks(tick, time, rotation=20)
    plt.xlabel("Time")
    plt.ylabel("Power output (kW)")
    plt.legend()
    plt.savefig(config.OUTPUT_FOLDER + "/prediction.png")
    plt.show()