Ejemplo n.º 1
0
def betterEvaluationFunction(currentGameState):
    """
      Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable
      evaluation function (question 5).

      DESCRIPTION: <write something here so we know what you did>
    """
    "*** YOUR CODE HERE ***"
    # util.raiseNotDefined()
    newPos = currentGameState.getPacmanPosition()
    newFood = currentGameState.getFood()
    newGhostStates = currentGameState.getGhostStates()
    newScaredTimes = [ghostState.scaredTimer for ghostState in newGhostStates]

    "*** YOUR CODE HERE ***"
    currFood = currentGameState.getFood()
    Fooddist = []
    for food in currFood.asList():
        if manhattan(
                newPos, food
        ) == 0:  # if next position is food then pursue it. Reciprocal will give high value
            Fooddist.append(1)
        else:
            Fooddist.append(manhattan(
                newPos, food))  # store distances to food in array

    for ghost in newGhostStates:
        if manhattan(newPos, ghost.getPosition()
                     ) == 0:  # Avoid if ghost is in the next position is ghost
            return -9999999

    return currentGameState.getScore() + (1 / min(Fooddist)) + 1 / len(
        newScaredTimes)  # maximize score and reduce distance to next food
Ejemplo n.º 2
0
    def voronoi_ish(self, rects):
        nearest = defaultdict(set)
        for rect in rects:
            p = self.points[0]
            dist = util.manhattan(rect.center, p)
            for q in self.points[1:]:
                d = util.manhattan(rect.center, q)
                if d < dist:
                    dist = d
                    p = q
            nearest[p] |= set(self.get_rect(rect))

        for (i, p) in enumerate(self.points):
            for q in self.points[i+1:]:
                self.borders += nearest[p] & nearest[q]
Ejemplo n.º 3
0
    def __init__(self, seed_points, seed_rooms, space, num_rooms, paths=1):
        self.seed_points = seed_points
        self.seed_rooms = seed_rooms
        points = seed_points[:]
        points += [room.center for room in seed_rooms]
        self.n_seeds = len(points)
        list_space = list(space)
        # Pick points to draw buildings around
        while len(points) < num_rooms + len(seed_rooms):
            p = random.choice(list_space)
            points.append(p)
            for q in points[:-1]:
                if util.manhattan(p, q) < 4:
                    points.remove(p)
                    break

        self.space = space
        self.cells = []
        self.interior = []
        self.borders = []
        #self.subdivide(boundary)

        self.points = points
        #self.voronoi_ish(self.get_wrecked(boundary))
        self.buildings = self.make_buildings()

        self.edges = [(i,i+1) for i in range(len(points)-1)]
Ejemplo n.º 4
0
    def evaluationFunction(self, currentGameState, action):
        """
        Design a better evaluation function here.

        The evaluation function takes in the current and proposed successor
        GameStates (pacman.py) and returns a number, where higher numbers are better.

        The code below extracts some useful information from the state, like the
        remaining food (newFood) and Pacman position after moving (newPos).
        newScaredTimes holds the number of moves that each ghost will remain
        scared because of Pacman having eaten a power pellet.

        Print out these variables to see what you're getting, then combine them
        to create a masterful evaluation function.
        """
        # Useful information you can extract from a GameState (pacman.py)
        successorGameState = currentGameState.generatePacmanSuccessor(action)
        newPos = successorGameState.getPacmanPosition()
        newFood = successorGameState.getFood()
        newGhostStates = successorGameState.getGhostStates()
        newScaredTimes = [
            ghostState.scaredTimer for ghostState in newGhostStates
        ]

        "*** YOUR CODE HERE ***"
        currFood = currentGameState.getFood()
        Fooddist = []
        for food in currFood.asList():
            if Directions.STOP in action:  # if action is stop then do not pursue it return high -ve value
                return -99999999
            if manhattan(
                    newPos, food
            ) == 0:  # if next position is food then pursue it. Reciprocal will give high value
                Fooddist.append(1)
            else:
                Fooddist.append(manhattan(
                    newPos, food))  # store distances to food in array

        for ghost in newGhostStates:
            if manhattan(newPos, ghost.getPosition(
            )) == 0:  # Avoid if ghost is in the next position is ghost
                return -9999999

        return currentGameState.getScore() + (
            1 / min(Fooddist)
        )  # maximize score and reduce distance to next food
Ejemplo n.º 5
0
    def nearest_food(self, coord):
        if len(self.food) == 0:
            return None

        shortest = sys.maxsize

        for food in self.food:
            distance = manhattan(food, coord)

            if distance < shortest:
                shortest = distance
                nearest = food

        return nearest
Ejemplo n.º 6
0
  def is_low_risk(self, coord):
    if self.board.get_weight(coord) >= Weight.LONG_SNAKE_HEAD.value:
      # long snake, high risk
      return False
    
    if len(self.board.safe_neighbors(coord)) > 0:
      # has exit strategy, low risk
      return True

    future_tail = self.my_body[-2]
    if self.my_health == 100:
      # tail is not going to move
      future_tail = self.my_tail

    if self.board.token(coord) != TokenType.FOOD and manhattan(coord, future_tail) <= 1:
      # tail will be safe exit, low risk
      return True

    # Coord has food and there is no exit strategy, high risk
    return False
Ejemplo n.º 7
0
    def __init__(self, boundary, space, num_rooms, paths=1):
        points = []
        list_space = list(space)
        # Pick points to draw buildings around
        while len(points) < num_rooms:
            p = random.choice(list_space)
            for q in points:
                if util.manhattan(p, q) < 3:
                    continue
            points.append(p)

        self.space = space
        self.cells = []
        self.interior = []
        self.borders = []
        #self.subdivide(boundary)

        self.points = points
        #self.voronoi_ish(self.get_wrecked(boundary))
        self.borders = self.make_buildings()

        self.edges = [(i,i+1) for i in range(len(points)-1)]
Ejemplo n.º 8
0
 def distance(self):
     return manhattan(self.x1, self.y1, self.x2, self.y2)
Ejemplo n.º 9
0
    def move(self, direction):
        self.steps += 1
        self.stepsSinceApple += 1

        oldManhattanDistance = util.manhattan(self.cells[0], self.game.applePos, self.game.width)
        nextPos = self.cells[0] # get head
        if direction == 24 and (self.length == 1 or self.direction != 25): #up
            nextPos -= self.game.width
            self.direction = 24
            if nextPos < 0:
                self.game.over = True
                return -1
        elif direction == 25 and (self.length == 1 or self.direction != 24): #down
            nextPos += self.game.width
            self.direction = 25
            if nextPos//self.game.width >= self.game.height:
                self.game.over = True
                return -1
        elif direction == 26 and (self.length == 1 or self.direction != 27): #right
            nextPos += 1
            self.direction = 26
            if nextPos%self.game.width == 0:
                self.game.over = True
                return -1
        elif direction == 27 and (self.length == 1 or self.direction != 26): #left
            nextPos -= 1
            self.direction = 27
            if nextPos%self.game.width == self.game.width-1:
                self.game.over = True
                return -1
        else:
            return self.move(self.direction)
        if self.game.board[nextPos] == Game.SNAKE:
            self.game.over = True
            return -1

        self.cells.appendleft(nextPos)
        newManhattanDistance = util.manhattan(self.cells[0], self.game.applePos, self.game.width)
        if newManhattanDistance > oldManhattanDistance:
            self.stepsAway += 1
        
        if self.deferGrow >= 1:
            self.deferGrow -= 1
            self.length += 1

        # check if we ate apple
        if self.game.board[nextPos] == Game.APPLE:
            self.grow()
            newApple = random.randint(0, self.game.width*self.game.height-1)
            while(self.game.board[newApple] != Game.EMPTY):
                newApple = random.randint(0, self.game.width*self.game.height-1)
            self.game.applePos = newApple
            self.game.score += 100
            self.stepsSinceApple = 0

        # update board
        self.game.board = [Game.EMPTY for _ in range(self.game.width*self.game.height)]
        for i in range(self.length):
            self.game.board[self.cells[i]] = Game.SNAKE
        self.game.board[self.game.applePos] = Game.APPLE

        return 0
Ejemplo n.º 10
0
def heuristic(coord, goal):
  return manhattan(coord, goal)
Ejemplo n.º 11
0
 def distance_to_ride_start(self, ride):
     return manhattan(self.x, self.y, ride.x1, ride.y1)
Ejemplo n.º 12
0
 def distance_to(self, x, y):
     return manhattan(self.x, self.y, x, y)