Ejemplo n.º 1
0
def filter_binary_dilation(np_img, disk_size=5, iterations=1, output_type="uint8"):
  """
  Dilate a binary object (bool, float, or uint8).

  Args:
    np_img: Binary image as a NumPy array.
    disk_size: Radius of the disk structuring element used for dilation.
    iterations: How many times to repeat the dilation.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8) where edges have been dilated.
  """
  t = Time()
  if np_img.dtype == "uint8":
    np_img = np_img / 255
  result = sc_morph.binary_dilation(np_img, sk_morphology.disk(disk_size), iterations=iterations)
  if output_type == "bool":
    pass
  elif output_type == "float":
    result = result.astype(float)
  else:
    result = result.astype("uint8") * 255
  util.np_info(result, "Binary Dilation", t.elapsed())
  return result
Ejemplo n.º 2
0
def filter_binary_closing(np_img, disk_size=3, iterations=1, output_type="uint8"):
  """
  Close a binary object (bool, float, or uint8). Closing is a dilation followed by an erosion.
  Closing can be used to remove small holes.

  Args:
    np_img: Binary image as a NumPy array.
    disk_size: Radius of the disk structuring element used for closing.
    iterations: How many times to repeat.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8) following binary closing.
  """
  t = Time()
  if np_img.dtype == "uint8":
    np_img = np_img / 255
  result = sc_morph.binary_closing(np_img, sk_morphology.disk(disk_size), iterations=iterations)
  if output_type == "bool":
    pass
  elif output_type == "float":
    result = result.astype(float)
  else:
    result = result.astype("uint8") * 255
  util.np_info(result, "Binary Closing", t.elapsed())
  return result
Ejemplo n.º 3
0
def filter_remove_small_holes(np_img, min_size=3000, output_type="uint8"):
  """
  Filter image to remove small holes less than a particular size.

  Args:
    np_img: Image as a NumPy array of type bool.
    min_size: Remove small holes below this size.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8).
  """
  t = Time()

  rem_sm = sk_morphology.remove_small_holes(np_img, min_size=min_size)

  if output_type == "bool":
    pass
  elif output_type == "float":
    rem_sm = rem_sm.astype(float)
  else:
    rem_sm = rem_sm.astype("uint8") * 255

  util.np_info(rem_sm, "Remove Small Holes", t.elapsed())
  return rem_sm
Ejemplo n.º 4
0
def filter_red_pen(rgb, output_type="bool"):
  """
  Create a mask to filter out red pen marks from a slide.

  Args:
    rgb: RGB image as a NumPy array.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array representing the mask.
  """
  t = Time()
  result = filter_red(rgb, red_lower_thresh=150, green_upper_thresh=80, blue_upper_thresh=90) & \
           filter_red(rgb, red_lower_thresh=110, green_upper_thresh=20, blue_upper_thresh=30) & \
           filter_red(rgb, red_lower_thresh=185, green_upper_thresh=65, blue_upper_thresh=105) & \
           filter_red(rgb, red_lower_thresh=195, green_upper_thresh=85, blue_upper_thresh=125) & \
           filter_red(rgb, red_lower_thresh=220, green_upper_thresh=115, blue_upper_thresh=145) & \
           filter_red(rgb, red_lower_thresh=125, green_upper_thresh=40, blue_upper_thresh=70) & \
           filter_red(rgb, red_lower_thresh=200, green_upper_thresh=120, blue_upper_thresh=150) & \
           filter_red(rgb, red_lower_thresh=100, green_upper_thresh=50, blue_upper_thresh=65) & \
           filter_red(rgb, red_lower_thresh=85, green_upper_thresh=25, blue_upper_thresh=45)
  if output_type == "bool":
    pass
  elif output_type == "float":
    result = result.astype(float)
  else:
    result = result.astype("uint8") * 255
  util.np_info(result, "Filter Red Pen", t.elapsed())
  return result
Ejemplo n.º 5
0
def filter_blue(rgb, red_upper_thresh, green_upper_thresh, blue_lower_thresh, output_type="bool",
                display_np_info=False):
  """
  Create a mask to filter out blueish colors, where the mask is based on a pixel being below a
  red channel threshold value, below a green channel threshold value, and above a blue channel threshold value.

  Args:
    rgb: RGB image as a NumPy array.
    red_upper_thresh: Red channel upper threshold value.
    green_upper_thresh: Green channel upper threshold value.
    blue_lower_thresh: Blue channel lower threshold value.
    output_type: Type of array to return (bool, float, or uint8).
    display_np_info: If True, display NumPy array info and filter time.

  Returns:
    NumPy array representing the mask.
  """
  if display_np_info:
    t = Time()
  r = rgb[:, :, 0] < red_upper_thresh
  g = rgb[:, :, 1] < green_upper_thresh
  b = rgb[:, :, 2] > blue_lower_thresh
  result = ~(r & g & b)
  if output_type == "bool":
    pass
  elif output_type == "float":
    result = result.astype(float)
  else:
    result = result.astype("uint8") * 255
  if display_np_info:
    util.np_info(result, "Filter Blue", t.elapsed())
  return result
Ejemplo n.º 6
0
def filter_blue_pen(rgb, output_type="bool"):
  """
  Create a mask to filter out blue pen marks from a slide.

  Args:
    rgb: RGB image as a NumPy array.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array representing the mask.
  """
  t = Time()
  result = filter_blue(rgb, red_upper_thresh=60, green_upper_thresh=120, blue_lower_thresh=190) & \
           filter_blue(rgb, red_upper_thresh=120, green_upper_thresh=170, blue_lower_thresh=200) & \
           filter_blue(rgb, red_upper_thresh=175, green_upper_thresh=210, blue_lower_thresh=230) & \
           filter_blue(rgb, red_upper_thresh=145, green_upper_thresh=180, blue_lower_thresh=210) & \
           filter_blue(rgb, red_upper_thresh=37, green_upper_thresh=95, blue_lower_thresh=160) & \
           filter_blue(rgb, red_upper_thresh=30, green_upper_thresh=65, blue_lower_thresh=130) & \
           filter_blue(rgb, red_upper_thresh=130, green_upper_thresh=155, blue_lower_thresh=180) & \
           filter_blue(rgb, red_upper_thresh=40, green_upper_thresh=35, blue_lower_thresh=85) & \
           filter_blue(rgb, red_upper_thresh=30, green_upper_thresh=20, blue_lower_thresh=65) & \
           filter_blue(rgb, red_upper_thresh=90, green_upper_thresh=90, blue_lower_thresh=140) & \
           filter_blue(rgb, red_upper_thresh=60, green_upper_thresh=60, blue_lower_thresh=120) & \
           filter_blue(rgb, red_upper_thresh=110, green_upper_thresh=110, blue_lower_thresh=175)
  if output_type == "bool":
    pass
  elif output_type == "float":
    result = result.astype(float)
  else:
    result = result.astype("uint8") * 255
  util.np_info(result, "Filter Blue Pen", t.elapsed())
  return result
Ejemplo n.º 7
0
def filter_grays(rgb, tolerance=15, output_type="bool"):
  """
  Create a mask to filter out pixels where the red, green, and blue channel values are similar.

  Args:
    np_img: RGB image as a NumPy array.
    tolerance: Tolerance value to determine how similar the values must be in order to be filtered out
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array representing a mask where pixels with similar red, green, and blue values have been masked out.
  """
  t = Time()
  (h, w, c) = rgb.shape

  rgb = rgb.astype(np.int)
  rg_diff = abs(rgb[:, :, 0] - rgb[:, :, 1]) <= tolerance
  rb_diff = abs(rgb[:, :, 0] - rgb[:, :, 2]) <= tolerance
  gb_diff = abs(rgb[:, :, 1] - rgb[:, :, 2]) <= tolerance
  result = ~(rg_diff & rb_diff & gb_diff)

  if output_type == "bool":
    pass
  elif output_type == "float":
    result = result.astype(float)
  else:
    result = result.astype("uint8") * 255
  util.np_info(result, "Filter Grays", t.elapsed())
  return result
Ejemplo n.º 8
0
def filter_local_equalization(np_img, disk_size=50):
  """
  Filter image (gray) using local equalization, which uses local histograms based on the disk structuring element.

  Args:
    np_img: Image as a NumPy array.
    disk_size: Radius of the disk structuring element used for the local histograms

  Returns:
    NumPy array with contrast enhanced using local equalization.
  """
  t = Time()
  local_equ = sk_filters.rank.equalize(np_img, selem=sk_morphology.disk(disk_size))
  util.np_info(local_equ, "Local Equalization", t.elapsed())
  return local_equ
Ejemplo n.º 9
0
def filter_rgb_to_hsv(np_img, display_np_info=True):
  """
  Filter RGB channels to HSV (Hue, Saturation, Value).

  Args:
    np_img: RGB image as a NumPy array.
    display_np_info: If True, display NumPy array info and filter time.

  Returns:
    Image as NumPy array in HSV representation.
  """

  if display_np_info:
    t = Time()
  hsv = sk_color.rgb2hsv(np_img)
  if display_np_info:
    util.np_info(hsv, "RGB to HSV", t.elapsed())
  return hsv
Ejemplo n.º 10
0
def filter_contrast_stretch(np_img, low=40, high=60):
  """
  Filter image (gray or RGB) using contrast stretching to increase contrast in image based on the intensities in
  a specified range.

  Args:
    np_img: Image as a NumPy array (gray or RGB).
    low: Range low value (0 to 255).
    high: Range high value (0 to 255).

  Returns:
    Image as NumPy array with contrast enhanced.
  """
  t = Time()
  low_p, high_p = np.percentile(np_img, (low * 100 / 255, high * 100 / 255))
  contrast_stretch = sk_exposure.rescale_intensity(np_img, in_range=(low_p, high_p))
  util.np_info(contrast_stretch, "Contrast Stretch", t.elapsed())
  return contrast_stretch
Ejemplo n.º 11
0
def filter_complement(np_img, output_type="uint8"):
  """
  Obtain the complement of an image as a NumPy array.

  Args:
    np_img: Image as a NumPy array.
    type: Type of array to return (float or uint8).

  Returns:
    Complement image as Numpy array.
  """
  t = Time()
  if output_type == "float":
    complement = 1.0 - np_img
  else:
    complement = 255 - np_img
  util.np_info(complement, "Complement", t.elapsed())
  return complement
Ejemplo n.º 12
0
def filter_kmeans_segmentation(np_img, compactness=10, n_segments=800):
  """
  Use K-means segmentation (color/space proximity) to segment RGB image where each segment is
  colored based on the average color for that segment.

  Args:
    np_img: Binary image as a NumPy array.
    compactness: Color proximity versus space proximity factor.
    n_segments: The number of segments.

  Returns:
    NumPy array (uint8) representing 3-channel RGB image where each segment has been colored based on the average
    color for that segment.
  """
  t = Time()
  labels = sk_segmentation.slic(np_img, compactness=compactness, n_segments=n_segments)
  result = sk_color.label2rgb(labels, np_img, kind='avg')
  util.np_info(result, "K-Means Segmentation", t.elapsed())
  return result
Ejemplo n.º 13
0
def filter_rgb_to_hed(np_img, output_type="uint8"):
  """
  Filter RGB channels to HED (Hematoxylin - Eosin - Diaminobenzidine) channels.

  Args:
    np_img: RGB image as a NumPy array.
    output_type: Type of array to return (float or uint8).

  Returns:
    NumPy array (float or uint8) with HED channels.
  """
  t = Time()
  hed = sk_color.rgb2hed(np_img)
  if output_type == "float":
    hed = sk_exposure.rescale_intensity(hed, out_range=(0.0, 1.0))
  else:
    hed = (sk_exposure.rescale_intensity(hed, out_range=(0, 255))).astype("uint8")

  util.np_info(hed, "RGB to HED", t.elapsed())
  return hed
Ejemplo n.º 14
0
def filter_rgb_to_grayscale(np_img, output_type="uint8"):
  """
  Convert an RGB NumPy array to a grayscale NumPy array.

  Shape (h, w, c) to (h, w).

  Args:
    np_img: RGB Image as a NumPy array.
    output_type: Type of array to return (float or uint8)

  Returns:
    Grayscale image as NumPy array with shape (h, w).
  """
  t = Time()
  # Another common RGB ratio possibility: [0.299, 0.587, 0.114]
  grayscale = np.dot(np_img[..., :3], [0.2125, 0.7154, 0.0721])
  if output_type != "float":
    grayscale = grayscale.astype("uint8")
  util.np_info(grayscale, "Gray", t.elapsed())
  return grayscale
Ejemplo n.º 15
0
def filter_hed_to_eosin(np_img, output_type="uint8"):
  """
  Obtain Eosin channel from HED NumPy array and rescale it (for example, to 0 to 255 for uint8) for increased
  contrast.

  Args:
    np_img: HED image as a NumPy array.
    output_type: Type of array to return (float or uint8).

  Returns:
    NumPy array for Eosin channel.
  """
  t = Time()
  eosin = np_img[:, :, 1]
  if output_type == "float":
    eosin = sk_exposure.rescale_intensity(eosin, out_range=(0.0, 1.0))
  else:
    eosin = (sk_exposure.rescale_intensity(eosin, out_range=(0, 255))).astype("uint8")
  util.np_info(eosin, "HED to Eosin", t.elapsed())
  return eosin
Ejemplo n.º 16
0
def filter_rag_threshold(np_img, compactness=10, n_segments=800, threshold=9):
  """
  Use K-means segmentation to segment RGB image, build region adjacency graph based on the segments, combine
  similar regions based on threshold value, and then output these resulting region segments.

  Args:
    np_img: Binary image as a NumPy array.
    compactness: Color proximity versus space proximity factor.
    n_segments: The number of segments.
    threshold: Threshold value for combining regions.

  Returns:
    NumPy array (uint8) representing 3-channel RGB image where each segment has been colored based on the average
    color for that segment (and similar segments have been combined).
  """
  t = Time()
  labels = sk_segmentation.slic(np_img, compactness=compactness, n_segments=n_segments)
  g = sk_future.graph.rag_mean_color(np_img, labels)
  labels2 = sk_future.graph.cut_threshold(labels, g, threshold)
  result = sk_color.label2rgb(labels2, np_img, kind='avg')
  util.np_info(result, "RAG Threshold", t.elapsed())
  return result
Ejemplo n.º 17
0
def filter_otsu_threshold(np_img, output_type="uint8"):
  """
  Compute Otsu threshold on image as a NumPy array and return binary image based on pixels above threshold.

  Args:
    np_img: Image as a NumPy array.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8) where True, 1.0, and 255 represent a pixel above Otsu threshold.
  """
  t = Time()
  otsu_thresh_value = sk_filters.threshold_otsu(np_img)
  otsu = (np_img > otsu_thresh_value)
  if output_type == "bool":
    pass
  elif output_type == "float":
    otsu = otsu.astype(float)
  else:
    otsu = otsu.astype("uint8") * 255
  util.np_info(otsu, "Otsu Threshold", t.elapsed())
  return otsu
Ejemplo n.º 18
0
def filter_adaptive_equalization(np_img, nbins=256, clip_limit=0.01, output_type="uint8"):
  """
  Filter image (gray or RGB) using adaptive equalization to increase contrast in image, where contrast in local regions
  is enhanced.

  Args:
    np_img: Image as a NumPy array (gray or RGB).
    nbins: Number of histogram bins.
    clip_limit: Clipping limit where higher value increases contrast.
    output_type: Type of array to return (float or uint8).

  Returns:
     NumPy array (float or uint8) with contrast enhanced by adaptive equalization.
  """
  t = Time()
  adapt_equ = sk_exposure.equalize_adapthist(np_img, nbins=nbins, clip_limit=clip_limit)
  if output_type == "float":
    pass
  else:
    adapt_equ = (adapt_equ * 255).astype("uint8")
  util.np_info(adapt_equ, "Adapt Equalization", t.elapsed())
  return adapt_equ
Ejemplo n.º 19
0
def filter_entropy(np_img, neighborhood=9, threshold=5, output_type="uint8"):
  """
  Filter image based on entropy (complexity).

  Args:
    np_img: Image as a NumPy array.
    neighborhood: Neighborhood size (defines height and width of 2D array of 1's).
    threshold: Threshold value.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8) where True, 1.0, and 255 represent a measure of complexity.
  """
  t = Time()
  entr = sk_filters.rank.entropy(np_img, np.ones((neighborhood, neighborhood))) > threshold
  if output_type == "bool":
    pass
  elif output_type == "float":
    entr = entr.astype(float)
  else:
    entr = entr.astype("uint8") * 255
  util.np_info(entr, "Entropy", t.elapsed())
  return entr
Ejemplo n.º 20
0
def filter_hysteresis_threshold(np_img, low=50, high=100, output_type="uint8"):
  """
  Apply two-level (hysteresis) threshold to an image as a NumPy array, returning a binary image.

  Args:
    np_img: Image as a NumPy array.
    low: Low threshold.
    high: High threshold.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8) where True, 1.0, and 255 represent a pixel above hysteresis threshold.
  """
  t = Time()
  hyst = sk_filters.apply_hysteresis_threshold(np_img, low, high)
  if output_type == "bool":
    pass
  elif output_type == "float":
    hyst = hyst.astype(float)
  else:
    hyst = (255 * hyst).astype("uint8")
  util.np_info(hyst, "Hysteresis Threshold", t.elapsed())
  return hyst
Ejemplo n.º 21
0
def filter_threshold(np_img, threshold, output_type="bool"):
  """
  Return mask where a pixel has a value if it exceeds the threshold value.

  Args:
    np_img: Binary image as a NumPy array.
    threshold: The threshold value to exceed.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array representing a mask where a pixel has a value (T, 1.0, or 255) if the corresponding input array
    pixel exceeds the threshold value.
  """
  t = Time()
  result = (np_img > threshold)
  if output_type == "bool":
    pass
  elif output_type == "float":
    result = result.astype(float)
  else:
    result = result.astype("uint8") * 255
  util.np_info(result, "Threshold", t.elapsed())
  return result
Ejemplo n.º 22
0
def filter_histogram_equalization(np_img, nbins=256, output_type="uint8"):
  """
  Filter image (gray or RGB) using histogram equalization to increase contrast in image.

  Args:
    np_img: Image as a NumPy array (gray or RGB).
    nbins: Number of histogram bins.
    output_type: Type of array to return (float or uint8).

  Returns:
     NumPy array (float or uint8) with contrast enhanced by histogram equalization.
  """
  t = Time()
  # if uint8 type and nbins is specified, convert to float so that nbins can be a value besides 256
  if np_img.dtype == "uint8" and nbins != 256:
    np_img = np_img / 255
  hist_equ = sk_exposure.equalize_hist(np_img, nbins=nbins)
  if output_type == "float":
    pass
  else:
    hist_equ = (hist_equ * 255).astype("uint8")
  util.np_info(hist_equ, "Hist Equalization", t.elapsed())
  return hist_equ
Ejemplo n.º 23
0
def filter_local_otsu_threshold(np_img, disk_size=3, output_type="uint8"):
  """
  Compute local Otsu threshold for each pixel and return binary image based on pixels being less than the
  local Otsu threshold.

  Args:
    np_img: Image as a NumPy array.
    disk_size: Radius of the disk structuring element used to compute the Otsu threshold for each pixel.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8) where local Otsu threshold values have been applied to original image.
  """
  t = Time()
  local_otsu = sk_filters.rank.otsu(np_img, sk_morphology.disk(disk_size))
  if output_type == "bool":
    pass
  elif output_type == "float":
    local_otsu = local_otsu.astype(float)
  else:
    local_otsu = local_otsu.astype("uint8") * 255
  util.np_info(local_otsu, "Otsu Local Threshold", t.elapsed())
  return local_otsu
Ejemplo n.º 24
0
def filter_binary_fill_holes(np_img, output_type="bool"):
  """
  Fill holes in a binary object (bool, float, or uint8).

  Args:
    np_img: Binary image as a NumPy array.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8) where holes have been filled.
  """
  t = Time()
  if np_img.dtype == "uint8":
    np_img = np_img / 255
  result = sc_morph.binary_fill_holes(np_img)
  if output_type == "bool":
    pass
  elif output_type == "float":
    result = result.astype(float)
  else:
    result = result.astype("uint8") * 255
  util.np_info(result, "Binary Fill Holes", t.elapsed())
  return result
Ejemplo n.º 25
0
def filter_remove_small_objects(np_img, min_size=3000, avoid_overmask=True, overmask_thresh=95, output_type="uint8"):
  """
  Filter image to remove small objects (connected components) less than a particular minimum size. If avoid_overmask
  is True, this function can recursively call itself with progressively smaller minimum size objects to remove to
  reduce the amount of masking that this filter performs.

  Args:
    np_img: Image as a NumPy array of type bool.
    min_size: Minimum size of small object to remove.
    avoid_overmask: If True, avoid masking above the overmask_thresh percentage.
    overmask_thresh: If avoid_overmask is True, avoid masking above this threshold percentage value.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8).
  """
  t = Time()

  rem_sm = np_img.astype(bool)  # make sure mask is boolean
  rem_sm = sk_morphology.remove_small_objects(rem_sm, min_size=min_size)
  mask_percentage = mask_percent(rem_sm)
  if (mask_percentage >= overmask_thresh) and (min_size >= 1) and (avoid_overmask is True):
    new_min_size = min_size / 2
    print("Mask percentage %3.2f%% >= overmask threshold %3.2f%% for Remove Small Objs size %d, so try %d" % (
      mask_percentage, overmask_thresh, min_size, new_min_size))
    rem_sm = filter_remove_small_objects(np_img, new_min_size, avoid_overmask, overmask_thresh, output_type)
  np_img = rem_sm

  if output_type == "bool":
    pass
  elif output_type == "float":
    np_img = np_img.astype(float)
  else:
    np_img = np_img.astype("uint8") * 255

  util.np_info(np_img, "Remove Small Objs", t.elapsed())
  return np_img
Ejemplo n.º 26
0
def filter_green_channel(np_img, green_thresh=200, avoid_overmask=True, overmask_thresh=90, output_type="bool"):
  """
  Create a mask to filter out pixels with a green channel value greater than a particular threshold, since hematoxylin
  and eosin are purplish and pinkish, which do not have much green to them.

  Args:
    np_img: RGB image as a NumPy array.
    green_thresh: Green channel threshold value (0 to 255). If value is greater than green_thresh, mask out pixel.
    avoid_overmask: If True, avoid masking above the overmask_thresh percentage.
    overmask_thresh: If avoid_overmask is True, avoid masking above this threshold percentage value.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array representing a mask where pixels above a particular green channel threshold have been masked out.
  """
  t = Time()

  g = np_img[:, :, 1]
  gr_ch_mask = (g < green_thresh) & (g > 0)
  mask_percentage = mask_percent(gr_ch_mask)
  if (mask_percentage >= overmask_thresh) and (green_thresh < 255) and (avoid_overmask is True):
    new_green_thresh = math.ceil((255 - green_thresh) / 2 + green_thresh)
    print(
      "Mask percentage %3.2f%% >= overmask threshold %3.2f%% for Remove Green Channel green_thresh=%d, so try %d" % (
        mask_percentage, overmask_thresh, green_thresh, new_green_thresh))
    gr_ch_mask = filter_green_channel(np_img, new_green_thresh, avoid_overmask, overmask_thresh, output_type)
  np_img = gr_ch_mask

  if output_type == "bool":
    pass
  elif output_type == "float":
    np_img = np_img.astype(float)
  else:
    np_img = np_img.astype("uint8") * 255

  util.np_info(np_img, "Filter Green Channel", t.elapsed())
  return np_img
Ejemplo n.º 27
0
def filter_canny(np_img, sigma=1, low_threshold=0, high_threshold=25, output_type="uint8"):
  """
  Filter image based on Canny algorithm edges.

  Args:
    np_img: Image as a NumPy array.
    sigma: Width (std dev) of Gaussian.
    low_threshold: Low hysteresis threshold value.
    high_threshold: High hysteresis threshold value.
    output_type: Type of array to return (bool, float, or uint8).

  Returns:
    NumPy array (bool, float, or uint8) representing Canny edge map (binary image).
  """
  t = Time()
  can = sk_feature.canny(np_img, sigma=sigma, low_threshold=low_threshold, high_threshold=high_threshold)
  if output_type == "bool":
    pass
  elif output_type == "float":
    can = can.astype(float)
  else:
    can = can.astype("uint8") * 255
  util.np_info(can, "Canny Edges", t.elapsed())
  return can
Ejemplo n.º 28
0
def filter_hsv_to_h(hsv, output_type="int", display_np_info=True):
  """
  Obtain hue values from HSV NumPy array as a 1-dimensional array. If output as an int array, the original float
  values are multiplied by 360 for their degree equivalents for simplicity. For more information, see
  https://en.wikipedia.org/wiki/HSL_and_HSV

  Args:
    hsv: HSV image as a NumPy array.
    output_type: Type of array to return (float or int).
    display_np_info: If True, display NumPy array info and filter time.

  Returns:
    Hue values (float or int) as a 1-dimensional NumPy array.
  """
  if display_np_info:
    t = Time()
  h = hsv[:, :, 0]
  h = h.flatten()
  if output_type == "int":
    h *= 360
    h = h.astype("int")
  if display_np_info:
    util.np_info(hsv, "HSV to H", t.elapsed())
  return h