Ejemplo n.º 1
0
    def update_image(self):
        self.update_pose()
        if (not self.needs_update) and self.last_pose is not None and (
            (self.last_pose - self.current_pose).abs().sum().item() < 1e-5):
            self.master.after(1000 // 30, self.update_image)
            return
        if self.source_image is None:
            self.master.after(1000 // 30, self.update_image)
            return
        self.last_pose = self.current_pose

        posed_image = self.poser.pose(self.source_image,
                                      self.current_pose).detach().cpu()
        numpy_image = rgba_to_numpy_image(posed_image[0])
        pil_image = PIL.Image.fromarray(numpy.uint8(
            numpy.rint(numpy_image * 255.0)),
                                        mode='RGBA')
        photo_image = PIL.ImageTk.PhotoImage(image=pil_image)

        self.posed_image_label.configure(image=photo_image, text="")
        self.posed_image_label.image = photo_image
        self.posed_image_label.pack()
        self.needs_update = False

        self.master.after(1000 // 30, self.update_image)
Ejemplo n.º 2
0
    def update_image(self):
        there_is_frame, frame = self.video_capture.read()
        if not there_is_frame:
            return
        rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        faces = self.face_detector(rgb_frame)
        euler_angles = None
        face_landmarks = None
        if len(faces) > 0:
            face_rect = faces[0]
            face_landmarks = self.landmark_locator(rgb_frame, face_rect)
            face_box_points, euler_angles = self.head_pose_solver.solve_head_pose(face_landmarks)
            self.draw_face_landmarks(rgb_frame, face_landmarks)
            self.draw_face_box(rgb_frame, face_box_points)

        resized_frame = cv2.flip(cv2.resize(rgb_frame, (192, 256)), 1)
        pil_image = PIL.Image.fromarray(resized_frame, mode='RGB')
        photo_image = PIL.ImageTk.PhotoImage(image=pil_image)
        self.video_capture_label.configure(image=photo_image, text="")
        self.video_capture_label.image = photo_image
        self.video_capture_label.pack()

        if euler_angles is not None and self.source_image is not None:
            self.current_pose = torch.zeros(self.pose_size, device=self.torch_device)
            self.current_pose[0] = max(min(-euler_angles.item(0) / 15.0, 1.0), -1.0)
            self.current_pose[1] = max(min(-euler_angles.item(1) / 15.0, 1.0), -1.0)
            self.current_pose[2] = max(min(euler_angles.item(2) / 15.0, 1.0), -1.0)

            if self.last_pose is None:
                self.last_pose = self.current_pose
            else:
                self.current_pose = self.current_pose * 0.5 + self.last_pose * 0.5
                self.last_pose = self.current_pose

            eye_min_ratio = 0.15
            eye_max_ratio = 0.25
            left_eye_normalized_ratio = compute_left_eye_normalized_ratio(face_landmarks, eye_min_ratio, eye_max_ratio)
            self.current_pose[3] = 1 - left_eye_normalized_ratio
            right_eye_normalized_ratio = compute_right_eye_normalized_ratio(face_landmarks,
                                                                            eye_min_ratio,
                                                                            eye_max_ratio)
            self.current_pose[4] = 1 - right_eye_normalized_ratio

            min_mouth_ratio = 0.02
            max_mouth_ratio = 0.3
            mouth_normalized_ratio = compute_mouth_normalized_ratio(face_landmarks, min_mouth_ratio, max_mouth_ratio)
            self.current_pose[5] = mouth_normalized_ratio

            self.current_pose = self.current_pose.unsqueeze(dim=0)

            posed_image = self.poser.pose(self.source_image, self.current_pose).detach().cpu()
            numpy_image = rgba_to_numpy_image(posed_image[0])
            pil_image = PIL.Image.fromarray(np.uint8(np.rint(numpy_image * 255.0)), mode='RGBA')
            photo_image = PIL.ImageTk.PhotoImage(image=pil_image)
            self.posed_image_label.configure(image=photo_image, text="")
            self.posed_image_label.image = photo_image
            self.posed_image_label.pack()

        self.master.after(1000 // 60, self.update_image)
Ejemplo n.º 3
0
    def update_image(self, frame):
        rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        faces = self.face_detector(rgb_frame)
        euler_angles = None
        face_landmarks = None
        if len(faces) > 0:
            face_rect = faces[0]
            face_landmarks = self.landmark_locator(rgb_frame, face_rect)
            face_box_points, euler_angles = self.head_pose_solver.solve_head_pose(
                face_landmarks)

        resized_frame = cv2.flip(cv2.resize(rgb_frame, (192, 256)), 1)

        if euler_angles is not None and self.source_image is not None:
            self.current_pose = torch.zeros(self.pose_size,
                                            device=self.torch_device)
            self.current_pose[0] = max(min(-euler_angles.item(0) / 15.0, 1.0),
                                       -1.0)
            self.current_pose[1] = max(min(-euler_angles.item(1) / 15.0, 1.0),
                                       -1.0)
            self.current_pose[2] = max(min(euler_angles.item(2) / 15.0, 1.0),
                                       -1.0)

            if self.last_pose is None:
                self.last_pose = self.current_pose
            else:
                self.current_pose = self.current_pose * 0.5 + self.last_pose * 0.5
                self.last_pose = self.current_pose

            eye_min_ratio = 0.15
            eye_max_ratio = 0.25
            left_eye_normalized_ratio = compute_left_eye_normalized_ratio(
                face_landmarks, eye_min_ratio, eye_max_ratio)
            self.current_pose[3] = 1 - left_eye_normalized_ratio
            right_eye_normalized_ratio = compute_right_eye_normalized_ratio(
                face_landmarks, eye_min_ratio, eye_max_ratio)
            self.current_pose[4] = 1 - right_eye_normalized_ratio

            min_mouth_ratio = 0.02
            max_mouth_ratio = 0.3
            mouth_normalized_ratio = compute_mouth_normalized_ratio(
                face_landmarks, min_mouth_ratio, max_mouth_ratio)
            self.current_pose[5] = mouth_normalized_ratio

            self.current_pose = self.current_pose.unsqueeze(dim=0)

            posed_image = self.poser.pose(self.source_image,
                                          self.current_pose).detach().cpu()
            numpy_image = rgba_to_numpy_image(posed_image[0])
            numpy_image = cv2.cvtColor(numpy_image, cv2.COLOR_BGR2RGB)
            #pil_image = PIL.Image.fromarray(np.uint8(np.rint(numpy_image * 255.0)), mode='RGBA')

            return numpy_image
    def create_frame(self, frame):
        there_is_frame = True
        if not there_is_frame:
            return
        rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        faces = self.face_detector(rgb_frame)
        euler_angles = None
        face_landmarks = None
        if len(faces) > 0:
            face_rect = faces[0]
            face_landmarks = self.landmark_locator(rgb_frame, face_rect)
            face_box_points, euler_angles = self.head_pose_solver.solve_head_pose(
                face_landmarks)
            self.draw_face_landmarks(rgb_frame, face_landmarks)
            self.draw_face_box(rgb_frame, face_box_points)

        resized_frame = cv2.flip(cv2.resize(rgb_frame, (192, 256)), 1)
        pil_image = PIL.Image.fromarray(resized_frame, mode='RGB')

        if euler_angles is not None and self.source_image is not None:
            self.current_pose = torch.zeros(self.pose_size,
                                            device=self.torch_device)
            self.current_pose[0] = max(min(-euler_angles.item(0) / 15.0, 1.0),
                                       -1.0)
            self.current_pose[1] = max(min(-euler_angles.item(1) / 15.0, 1.0),
                                       -1.0)
            self.current_pose[2] = max(min(euler_angles.item(2) / 15.0, 1.0),
                                       -1.0)

            if self.last_pose is None:
                self.last_pose = self.current_pose
            else:
                self.current_pose = self.current_pose * 0.5 + self.last_pose * 0.5
                self.last_pose = self.current_pose

            min_mouth_ratio = 0.02
            max_mouth_ratio = 0.3
            mouth_normalized_ratio = compute_mouth_normalized_ratio(
                face_landmarks, min_mouth_ratio, max_mouth_ratio)
            self.current_pose[5] = mouth_normalized_ratio

            self.current_pose = self.current_pose.unsqueeze(dim=0)

            posed_image = self.poser.pose(self.source_image,
                                          self.current_pose).detach().cpu()
            numpy_image = rgba_to_numpy_image(posed_image[0])
            pil_image = PIL.Image.fromarray(np.uint8(
                np.rint(numpy_image * 255.0)),
                                            mode='RGBA')
            photo_image = np.array(pil_image)
        self.anime_video_frames.append(photo_image)
Ejemplo n.º 5
0
 def run(self, source_img, frame, save_path):
     # rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
     # faces = self.face_detector(rgb_frame)
     # euler_angles = None
     # face_landmarks = None
     # if len(faces) > 0:
     #     face_rect = faces[0]
     #     face_landmarks = self.landmark_locator(rgb_frame, face_rect)
     #     face_box_points, euler_angles = self.head_pose_solver.solve_head_pose(face_landmarks)
     #     # np.save("euler_angle.npy",euler_angles)
     #     # euler_angles = np.load("euler_angle.npy")
     #
     #     if euler_angles is not None and source_img is not None:
     #         self.current_pose = torch.zeros(self.pose_size, device=self.torch_device)
     #         self.current_pose[0] = max(min(-euler_angles.item(0) / 15.0, 1.0), -1.0)
     #         self.current_pose[1] = max(min(-euler_angles.item(1) / 15.0, 1.0), -1.0)
     #         self.current_pose[2] = max(min(euler_angles.item(2) / 15.0, 1.0), -1.0)
     #
     #         # if self.last_pose is None:
     #         # self.last_pose = self.current_pose
     #         # else:
     #         #     self.current_pose = self.current_pose * 0.5 + self.last_pose * 0.5  # smoothing
     #         #     self.last_pose = self.current_pose
     #
     #         eye_min_ratio = 0.15
     #         eye_max_ratio = 0.25
     #         left_eye_normalized_ratio = compute_left_eye_normalized_ratio(face_landmarks, eye_min_ratio, eye_max_ratio)
     #         self.current_pose[3] = 1 - left_eye_normalized_ratio
     #         right_eye_normalized_ratio = compute_right_eye_normalized_ratio(face_landmarks,
     #                                                                         eye_min_ratio,
     #                                                                         eye_max_ratio)
     #         self.current_pose[4] = 1 - right_eye_normalized_ratio
     #
     #         min_mouth_ratio = 0.02
     #         max_mouth_ratio = 0.3
     #         mouth_normalized_ratio = compute_mouth_normalized_ratio(face_landmarks, min_mouth_ratio, max_mouth_ratio)
     #         self.current_pose[5] = mouth_normalized_ratio
     #         self.current_pose = self.current_pose.unsqueeze(dim=0)
     #         np.save("current_pose.npy",self.current_pose.cpu())
     self.current_pose = torch.Tensor(np.load("current_pose.npy")).cuda()
     st = time.time()
     posed_image = self.poser.pose(source_image=source_img,
                                   pose=self.current_pose).detach().cpu()
     print("Core Time(poser.pose): ", time.time() - st)
     numpy_image = rgba_to_numpy_image(posed_image[0])
     pil_image = PIL.Image.fromarray(np.uint8(np.rint(numpy_image * 255.0)),
                                     mode='RGBA')
     pil_image.save(save_path)
     # TODO Core of demo, compress this
     return