Ejemplo n.º 1
0
def test():
    data = """
    1-3 a: abcde
    1-3 b: cdefg
    2-9 c: ccccccccc"""

    run_tests(p1, [(data, 2)])

    run_tests(p2, [(data, 1)])
def main(reg_lambda,
         learning_rate,
         loss_function,
         regulariser,
         niterations=10,
         enable_test_set_scoring=False,
         **kwargs):
    global data

    # Type of features to use. This can be set to 'bigram' or 'unigram+bigram' to use
    # bigram features instead of or in addition to unigram features.
    # Not required for assignment.
    feature_type = 'unigram'

    # First test the parts to be implemented and warn if something's wrong.
    print('=============')
    print('SANITY CHECKS')
    print('=============')
    print()

    util.run_tests()

    # Load the data.
    training_data, val_data, test_data, data = load_data(feature_type)

    # Train the classifier.
    print('Starting training.')
    weights, bias, training_log = train(training_data, val_data, loss_function,
                                        regulariser, reg_lambda, learning_rate,
                                        niterations)
    print('Training completed.')

    print()
    print('=====================')
    print('MODEL CHARACTERISTICS')
    print('=====================')
    print()

    # Display some useful statistics about the model and the training process.
    title = 'Data set: %s - Regulariser(%s): %g - Learning rate: %g ' \
            '- Loss Function: %s' % (
                data.name, regulariser, reg_lambda, learning_rate,
                loss_function)

    print()

    # Get final accuracy
    val_predictions = predict(weights, bias, val_data)
    val_accuracy = accuracy(val_data.labels, val_predictions)

    print('Accuracy: %g' % val_accuracy)

    util.show_stats(title,
                    training_log,
                    weights,
                    bias,
                    data.vocabulary,
                    top_n=1,
                    write_to_file="results.csv",
                    configuration={
                        'reg_lambda': reg_lambda,
                        'learning_rate': learning_rate,
                        'loss_function': loss_function,
                        'regulariser': regulariser,
                        'niterations': niterations,
                        'val_accuracy': val_accuracy
                    })

    util.create_plots(title,
                      training_log,
                      weights,
                      log_keys=['training_loss_reg', 'val_loss'])

    if enable_test_set_scoring:
        # Check the performance on the test set.
        test_loss = loss_function.unregularised_loss(weights, bias, test_data)
        test_predictions = predict(weights, bias, test_data)
        test_accuracy = accuracy(test_data.labels, test_predictions)

        print()
        print('====================')
        print('TEST SET PERFORMANCE')
        print('====================')
        print()
        print('Test loss: %g' % test_loss)
        print('Test accuracy: %g' % test_accuracy)
Ejemplo n.º 3
0
def main():
    # TRAINING HYPERPARAMETERS
    # Modify the following lines to change the training hyperparameters.

    # Regularisation strength
    reg_lambda = 0.0

    # Learning rate
    learning_rate = 0.07

    # Number of training iterations
    niterations = 100

    # Loss function to use (select one and comment out the other)
    loss_function = LogisticLoss()
    # loss_function = HingeLoss()

    # Type of regularisation to use (select one and comment out the other)
    # regulariser = L1Regulariser()
    regulariser = L2Regulariser()

    # This should only be enabled once you've decided on a final set of hyperparameters
    enable_test_set_scoring = True

    # Controls to use perceptron or not
    enable_perceptron = True

    # Type of features to use. This can be set to 'bigram' or 'unigram+bigram' to use
    # bigram features instead of or in addition to unigram features.
    # Not required for assignment.
    feature_type = 'unigram'

    # END OF HYPERPARAMETERS

    # First test the parts to be implemented and warn if something's wrong.
    print('=============')
    print('SANITY CHECKS')
    print('=============')
    print()

    util.run_tests()

    # Load the data.

    print()
    print('===================')
    print('CLASSIFIER TRAINING')
    print('===================')
    print()
    print('Loading data sets...')

    data_dir = './poldata/poldata.zip'
    data = util.load_movie_data(data_dir)

    data.select_feature_type(feature_type)

    # Split the data set randomly into training, validation and test sets.
    training_data, val_data, test_data = data.train_val_test_split()

    # Train the classifier.
    print('Starting training.')
    if enable_perceptron:
        weights, bias, training_log = train_perceptron(training_data, val_data,
                                                       niterations)
    else:
        weights, bias, training_log = train(training_data, val_data,
                                            loss_function, regulariser,
                                            reg_lambda, learning_rate,
                                            niterations)
    print('Training completed.')

    print()
    print('=====================')
    print('MODEL CHARACTERISTICS')
    print('=====================')
    print()

    # Display some useful statistics about the model and the training process.
    title = 'Data set: %s - Regulariser: %g - Learning rate: %g' % (
        data.name, reg_lambda, learning_rate)

    print()
    util.show_stats(title,
                    training_log,
                    weights,
                    bias,
                    data.vocabulary,
                    top_n=20)
    util.create_plots(title,
                      training_log,
                      weights,
                      log_keys=['training_loss_reg', 'val_loss'])

    if enable_test_set_scoring:
        # Check the performance on the test set.
        test_loss = loss_function.unregularised_loss(weights, bias, test_data)
        test_predictions = predict(weights, bias, test_data)
        test_accuracy = accuracy(test_data.labels, test_predictions)

        print()
        print('====================')
        print('TEST SET PERFORMANCE')
        print('====================')
        print()
        print('Test loss: %g' % test_loss)
        print('Test accuracy: %g' % test_accuracy)
            c.add(s[j])
            j += 1
            l = max(l, j - i)
        else:
            c.remove(s[i])
            i += 1
    return l


def longestSubstringWithoutRepeatingCharacters_slidingWindowOptimized(s):
    n = len(s)
    map = dict()
    i, l = 0, 0
    for j in range(n):
        if s[j] in map:
            i = max(map.get(s[j]), i)
        l = max(l, j - i + 1)
        map[s[j]] = j + 1
    return l


if __name__ == "__main__":
    solutions = [
        longestSubstringWithoutRepeatingCharacters_bruteForce,
        longestSubstringWithoutRepeatingCharacters_slidingWindow,
        longestSubstringWithoutRepeatingCharacters_slidingWindowOptimized
    ]
    tests = [(("abcabcbb", ), 3), (("bbbbb", ), 1), (("pwwkew", ), 3),
             (("", ), 0)]
    util.run_tests(solutions, tests)
Ejemplo n.º 5
0
#!/usr/bin/env python

from util import run_tests
from test_suite import *

if __name__ == "__main__":
    tests = arithmetic_tests + \
        mod_tests + \
        arithmetic_boolean_tests + \
        nary_arithmetic_tests + \
        bitwise_tests + \
        boolean_tests + \
        nary_boolean_tests + \
        const_arith_tests + \
        const_bool_tests + \
        ite_tests + \
        div_tests + \
        array_tests + \
        c_array_tests + \
        misc_tests + \
        biomatch_tests + \
        kmeans_tests
    # shift_tests

    # TODO: add support for return value - int promotion
    # unsigned_arithmetic_tests + \

    run_tests('c', tests)
Ejemplo n.º 6
0
#!/usr/bin/env python

from util import run_tests
from test_suite import *

if __name__ == "__main__":
    tests = arithmetic_tests + \
        arithmetic_boolean_tests + \
        nary_arithmetic_tests + \
        bitwise_tests + \
        boolean_tests + \
        nary_boolean_tests + \
        const_arith_tests + \
        const_bool_tests + \
        loop_tests + \
        ite_tests + \
        function_tests + \
        misc_tests
    # shift_tests + \
    # arr_tests + \

    run_tests('zok', tests)
        L -= 1
        R += 1
    return R - L - 1


def longestPalindromicSubstring_expandAroundCenter(s):
    if len(s) == 0:
        return s
    n = len(s)
    start, end = 0, 0
    for i in range(n):
        l1 = expandAroundCenter(s, i, i)
        l2 = expandAroundCenter(s, i, i + 1)
        l = max(l1, l2)
        if l > end - start:
            start = i - (l - 1) // 2
            end = i + l // 2
    return s[start:end + 1]


if __name__ == "__main__":
    solutions = [
        longestPalindromicSubstring_bruteForce,
        longestPalindromicSubstring_longestCommonSubstring,
        longestPalindromicSubstring_dynamicProgramming,
        longestPalindromicSubstring_expandAroundCenter
    ]
    tests = [(("babad", ), "bab"), (("cbbd", ), "bb"), (("a", ), "a"),
             (("ac", ), "a"), (("bb", ), "bb"), (("aacabdkacaa", ), "aca")]
    util.run_tests(solutions, tests, equals=lambda a, b: len(a) == len(b))
Ejemplo n.º 8
0
        elif l2 is None:
            l1.val += remainder
            remainder = l1.val // 10
            l1.val %= 10
            if remainder == 0:
                break
            l1_prev = l1
            l1 = l1.next
        else:
            l1.val += l2.val + remainder
            remainder = l1.val // 10
            l1.val %= 10
            l1_prev = l1
            l1 = l1.next
            l2 = l2.next
    if remainder != 0 and l1_prev is not None:
        l1_prev.next = ListNode(remainder)
    return root


if __name__ == "__main__":
    solutions = [addTwoNumbers]
    tests = [(([2, 4, 3], [5, 6, 4]), [7, 0, 8]), (([0], [0]), [0]),
             (([9, 9, 9, 9, 9, 9, 9], [9, 9, 9, 9]), [8, 9, 9, 9, 0, 0, 0, 1]),
             (([2, 4, 9], [5, 6, 4, 9]), [7, 0, 4, 0, 1])]
    for i, (inputs, expected) in enumerate(tests):
        inputs = tuple(ListNode.toLinkedList(x) for x in inputs)
        expected = ListNode.toLinkedList(expected)
        tests[i] = (inputs, expected)
    util.run_tests(solutions, tests, equals=ListNode.equals)