def task(self,myplugin,exp): while self.tq.qsize() > 0: target = self.tq.get_nowait() self.pross = self.pross + 1 self.lock.acquire() msg = '[*] %s|%s|%s' % (target,str(self.pross) + "/"+ str(self.maxpross),exp) wi = self.console_width -len(msg) if wi < 0: msg = msg[0:self.console_width] sys.stdout.write(msg + ' ' * (self.console_width -len(msg)) + '\r') self.lock.release() try: p = myplugin(target,exp) p.verify() result = p.result if result['status']: self.lock.acquire() msg = "[+] {target} | {file}".format(target=result['target'],file=exp) color.cprint(msg + ' ' * (self.console_width -len(msg)),CYAN) self.lock.release() saveResult(self.filename,result) except RequestException,e: pass except IOError,e: pass
def task(self, myplugin, exp): while self.tq.qsize() > 0: target = self.tq.get_nowait() self.pross = self.pross + 1 self.lock.acquire() msg = '[*] %s|%s|%s' % (target, str(self.pross) + "/" + str(self.maxpross), exp) wi = self.console_width - len(msg) if wi < 0: msg = msg[0:self.console_width] sys.stdout.write(msg + ' ' * (self.console_width - len(msg)) + '\r') self.lock.release() try: p = myplugin(target, exp) p.verify() result = p.result if result['status']: self.lock.acquire() msg = "[+] {target} | {file}".format( target=result['target'], file=exp) color.cprint(msg + ' ' * (self.console_width - len(msg)), CYAN) self.lock.release() saveResult(self.filename, result) except RequestException, e: pass except IOError, e: pass
def predict(testId, testX, model, stander): ''' Do prediction :param testId: :param testX: :param model: The chosen best model :return: None ''' ypred = model.predict(testX) ypred = stander.inverse_log10_y(ypred) # save prediction to csv saveResult(testId, ypred)
def works(self): while self.que.qsize() > 0: exp = self.que.get_nowait() m = __import__(exp[:-3]) myplugin = getattr(m, "Exploit") #只剩一个插件,启动线程 if self.que.qsize() == 0: for target in self.targets: self.tq.put(target) ts = [] for i in range(self.tnum): t = threading.Thread(target=self.task, args=(myplugin, exp)) ts.append(t) t.start() for t in ts: t.join() else: for target in self.targets: self.pross = self.pross + 1 self.lock.acquire() msg = '[*] %s|%s|%s' % (target, str(self.pross) + "/" + str(self.maxpross), exp) wi = self.console_width - len(msg) if wi < 0: msg = msg[0:self.console_width] sys.stdout.write(msg + ' ' * (self.console_width - len(msg)) + '\r') self.lock.release() try: p = myplugin(target, exp) p.verify() result = p.result if result['status']: self.lock.acquire() msg = "[+] {target} | {file}".format( target=result['target'], file=exp) color.cprint( msg + ' ' * (self.console_width - len(msg)), CYAN) self.lock.release() saveResult(self.filename, result) except RequestException, e: pass except IOError, e: pass except Exception, e: if e.message <> "": # print dir(e) print "error:%s|%s|%s" % (e.message, exp, target) pass
def works(self): while self.que.qsize() > 0: exp = self.que.get_nowait() m = __import__(exp[:-3]) myplugin = getattr(m, "Exploit") #只剩一个插件,启动线程 if self.que.qsize() == 0: for target in self.targets: self.tq.put(target) ts = [] for i in range(self.tnum): t = threading.Thread(target=self.task,args=(myplugin,exp)) ts.append(t) t.start() for t in ts: t.join() else: for target in self.targets: self.pross = self.pross + 1 self.lock.acquire() msg = '[*] %s|%s|%s' % (target,str(self.pross) + "/"+ str(self.maxpross),exp) wi = self.console_width -len(msg) if wi < 0: msg = msg[0:self.console_width] sys.stdout.write(msg + ' ' * (self.console_width -len(msg)) + '\r') self.lock.release() try: p = myplugin(target,exp) p.verify() result = p.result if result['status']: self.lock.acquire() msg = "[+] {target} | {file}".format(target=result['target'],file=exp) color.cprint(msg + ' ' * (self.console_width -len(msg)),CYAN) self.lock.release() saveResult(self.filename,result) except RequestException,e: pass except IOError,e: pass except Exception,e: if e.message <> "": # print dir(e) print "error:%s|%s|%s" % (e.message,exp,target) pass
def works(self): while self.que.qsize() > 0: exp = self.que.get() m = __import__(exp[:-3]) myplugin = getattr(m, "Exploit") for target in self.targets: msg = 'Scaning target:%s' % target sys.stdout.write(msg + ' ' * (self.console_width - len(msg)) + '\r') try: p = myplugin(target, exp) p.verify() result = p.result if result['status']: self.lock.acquire() color.cprint( "[+] {target} | {file}".format( target=result['target'], file=exp), CYAN) self.lock.release() saveResult(self.filename, result) except Exception, e: #print e pass
def evaluate_lenet5(learning_rate=0.1, n_epoches=200, nkerns=[20, 50], batch_size=500): # load data from dataset logging.info('... loading data') trainData, trainLabel = util.load_total_data() testData = util.loadTestData() trainData = util.upToInt(trainData) train_set_x = theano.shared(np.asarray(trainData, dtype = theano.config.floatX), borrow = True) train_set_y = theano.shared(np.asarray(trainLabel, dtype = theano.config.floatX), borrow = True) test_set_x = theano.shared(np.asarray(testData, dtype = theano.config.floatX), borrow = True) train_set_y = T.cast(train_set_y, 'int32') n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = train_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size rng = np.random.RandomState(23455) # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') y = T.ivector('y') logging.info('... building the model') layer0_input = x.reshape((batch_size, 1, 28, 28)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) # maxpooling reduces this further to (24/2, 24/2) = (12, 12) # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12) layer0 = LeNetConvPoolLayer( rng, input=layer0_input, image_shape=(batch_size, 1, 28, 28), filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2) ) # Construct the second convolutional pooling layer # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8) # maxpooling reduces this further to (8/2, 8/2) = (4, 4) # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4) layer1 = LeNetConvPoolLayer( rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 12, 12), filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2) ) # the HiddenLayer being fully-connected, it operates on 2D matrices of # shape (batch_size, num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4), # or (500, 50 * 4 * 4) = (500, 800) with the default values. layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = HiddenLayer( rng, input=layer2_input, n_in=nkerns[1] * 4 * 4, n_out=500, activation=T.tanh ) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) # the cost we minimize during training is the NLL of the model cost = layer3.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model validate_model = theano.function( [index], layer3.errors(y), givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size], } ) # create a list of all model parameters to be fit by gradient descent params = layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i], grads[i]) pairs. updates = [ (param_i, param_i - learning_rate * grad_i) for param_i, grad_i in zip(params, grads) ] train_model = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) validation_model = theano.function( [index], layer3.errors(y), givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) logging.info('... training') patience = 10000 patience_increase = 2 improvement_threshold = 0.995 validation_frequency = min(n_train_batches, patience / 2) best_validation_loss = np.inf best_iter = 0 test_score = 0. start_time = time.clock() epoch = 0 done_looping = False while (epoch < n_epoches) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: logging.info('training @ iter = %d' % (iter)) cost_ij = train_model(minibatch_index) if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validation_model(i) for i in xrange(n_valid_batches)] this_validation_loss = np.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) if (this_validation_loss * 100.) < 0.001: done_looping = True break end_time = time.clock() logging.info('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) # make a prediction and save file # make a prediction predict_model = theano.function( inputs=[index], outputs= layer3.predict(), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size] } ) # save the result file testLabel = np.array([]) for test_index in range(n_test_batches): tempLabel = predict_model(test_index) testLabel = np.hstack((testLabel, tempLabel)) util.saveResult(testLabel, './result/cnn_result.csv')
def GaussianNBClassify(trainData, trainLabel, testData): nbClf = GaussianNB() nbClf.fit(trainData, np.ravel(trainLabel)) testLabel = nbClf.predict(testData) util.saveResult(testLabel, './result/gaussion_nb_result.csv') return testLabel
def knnClassify(trainData, trainLabel, testData): knnClf = KNeighborsClassifier() knnClf.fit(trainData, np.ravel(trainLabel)) testLabel = knnClf.predict(testData) util.saveResult(testLabel, './result/sklearn_knn_result.csv') return testLabel
done_looping = False prev_cost = np.inf start_time = time.clock() while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 cost = train_model() impr = prev_cost - cost logging.info('epoch %d, cost: %f, impr: %f' % (epoch+1, cost, impr)) if impr < improvement_threshold: break prev_cost = cost end_time = time.clock() print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.)) # make a prediction predict_model = theano.function( inputs=[], outputs= classifier.predict(), givens={ x: test_set_x } ) testLabel = predict_model() util.saveResult(testLabel, './result/mlp_result.csv')
def treeClassify(trainData, trainLabel, testData): treeClf = tree.DecisionTreeClassifier() treeClf.fit(trainData, np.ravel(trainLabel)) testLabel = treeClf.predict(testData) util.saveResult(testLabel, "./result/decision_tree_result.csv") return testLabel
def rfClassify(trainData, trainLabel, testData): rfClf = RandomForestClassifier(n_estimators=100) rfClf.fit(trainData, np.ravel(trainLabel)) testLabel = rfClf.predict(testData) util.saveResult(testLabel, './result/random_forest_result.csv') return testLabel
def svcClassify(trainData, trainLabel, testData): svcClf = svm.SVC(C=5.0) svcClf.fit(trainData, np.ravel(trainLabel)) testLabel = svcClf.predict(testData) util.saveResult(testLabel, './result/svm_result.csv') return testLabel
def svmLinearClassify(trainData, trainLabel,testData): svcClf = svm.SVC(kernel='linear') svcClf.fit(trainData, np.ravel(trainLabel)) testLabel = svcClf.predict(testData) util.saveResult(testLabel, './result/svm_linear_result.csv') return testLabel
def baggingClassify(trainData, trainLabel, testData): baggingCif = BaggingClassifier(KNeighborsClassifier()) baggingCif.fit(trainData, np.ravel(trainLabel)) testLabel = baggingCif.predict(testData) util.saveResult(testLabel, './result/bagging_result.csv') return testLabel
def MultinomialNBClassify(trainData, trainLabel, testData): nbClf = MultinomialNB() nbClf.fit(trainData, np.ravel(trainLabel)) testLabel = nbClf.predict(testData) util.saveResult(testLabel, './result/multinomial_nb_result.csv') return testLabel
def lrClassify(trainData, trainLabel, testData): lrClf = linear_model.LogisticRegression(C=1e5) lrClf.fit(trainData, np.ravel(trainLabel)) testLabel = lrClf.predict(testData) util.saveResult(testLabel, './result/logistic_regression_result.csv') return testLabel
def adaboostClassify(trainData, trainLabel, testData): abClf = AdaBoostClassifier(n_estimators=500) abClf.fit(trainData, np.ravel(trainLabel)) testLabel = abClf.predict(testData) util.saveResult(testLabel, "./result/adaboost_result.csv") return testLabel
testData = testData.reshape(testData.shape[0], 1, 28, 28) model = Sequential() model.add(Convolution2D(32, 1, 3, 3, border_mode='full')) model.add(Activation('relu')) model.add(Convolution2D(32, 32, 3, 3)) model.add(Activation('relu')) model.add(MaxPooling2D(poolsize=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(32*196, 128)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(128, nb_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta') model.fit(trainData, trainLabel, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True) logging.info("Training process finished!") logging.info("Predict for testData...") y_pred = model.predict(testData,) testLabel = np.argmax(y_pred, axis=1) logging.info("Save result...") util.saveResult(testLabel, './result/keras_cnn_result.csv')