Ejemplo n.º 1
0
 def update_target_rect(self, rect_misses):
     if rect_misses[1] == 0:
         size, center = size_and_center(rect_misses[0])
         self.target = center + rect_misses[2]
         self.correction = distance_correction(size[0])
     else:
         self.target = None
Ejemplo n.º 2
0
                            continue
                        targets.append((rect, 0, np.zeros(2), 0))
                    possible_targets[:] = []

            vis = img.copy()
            next_targets = []

            for rect, misses, velocity, karlness in targets:
                x1, y1, x2, y2 = rect
                with the_lock:
                    roi = low_image[max(0, y1-BUFFER):min(width, y2+BUFFER), max(0, x1-BUFFER):min(height, x2+BUFFER)]

                # draw_rects(vis, [[max(0, x1-BUFFER), max(0, y1-BUFFER), min(height, x2+BUFFER), min(width, y2+BUFFER)]], (255,0,0))

                subt = clock()
                s, c = size_and_center(rect)
                subtargets = detect(roi.copy(), cascade_nested, size=(max(30, s[0]-REFIND_BUFFER), max(30, s[1]-REFIND_BUFFER)))
                # with the_lock:
                #     print "subtarget detect: ", clock() - subt
                if len(subtargets) == 1:
                    sx1, sy1, sx2, sy2 = subtargets[0]
                    vis_roi = vis[max(0, y1-BUFFER):min(width, y2+BUFFER), max(0, x1-BUFFER):min(height, x2+BUFFER)]
                    
                    if recognizing:
                        detection_image = roi[sy1:sy2, sx1:sx2]
                        predictions = recognizer.predict(cv.fromarray(detection_image))
                        for i, (label, confidence) in enumerate(predictions):
                            color = recog.LABEL_COLORS[label]
                            who = recog.LABELS[label]
                            # cv2.putText(vis_roi,
                            #     "%s (%s)" % (who, confidence),
Ejemplo n.º 3
0
            vis = img.copy()
            next_targets = []

            for rect, misses, velocity, karlness in targets:
                x1, y1, x2, y2 = rect
                with the_lock:
                    roi = low_image[max(0, y1 -
                                        BUFFER):min(width, y2 + BUFFER),
                                    max(0, x1 -
                                        BUFFER):min(height, x2 + BUFFER)]

                # draw_rects(vis, [[max(0, x1-BUFFER), max(0, y1-BUFFER), min(height, x2+BUFFER), min(width, y2+BUFFER)]], (255,0,0))

                subt = clock()
                s, c = size_and_center(rect)
                subtargets = detect(roi.copy(),
                                    cascade_nested,
                                    size=(max(30, s[0] - REFIND_BUFFER),
                                          max(30, s[1] - REFIND_BUFFER)))
                # with the_lock:
                #     print "subtarget detect: ", clock() - subt
                if len(subtargets) == 1:
                    sx1, sy1, sx2, sy2 = subtargets[0]
                    vis_roi = vis[max(0, y1 - BUFFER):min(width, y2 + BUFFER),
                                  max(0, x1 - BUFFER):min(height, x2 + BUFFER)]

                    if recognizing:
                        detection_image = roi[sy1:sy2, sx1:sx2]
                        predictions = recognizer.predict(
                            cv.fromarray(detection_image))
Ejemplo n.º 4
0
                possible_targets[:] = []

        vis = img.copy()
        next_targets = []

        last_time = time.time()
        for rect, misses, _ in targets:
            x1, y1, x2, y2 = rect
            with the_lock:
                roi = low_image[max(0, y1 - BUFFER):min(width, y2 + BUFFER),
                                max(0, x1 - BUFFER):min(height, x2 + BUFFER)]

            # draw_rects(vis, [[max(0, x1-BUFFER), max(0, y1-BUFFER), min(height, x2+BUFFER), min(width, y2+BUFFER)]], (255,0,0))

            subt = clock()
            s, c = size_and_center(rect)
            roi_copy = roi.copy()
            subtargets = detect(roi_copy,
                                cascade_nested,
                                size=(max(30, s[0] - REFIND_BUFFER),
                                      max(30, s[1] - REFIND_BUFFER)))
            if len(subtargets) == 1:
                sx1, sy1, sx2, sy2 = subtargets[0]
                if not contains(next_targets, subtargets[0]):
                    next_targets.append(([
                        max(0, x1 - BUFFER) + sx1,
                        max(0, y1 - BUFFER) + sy1,
                        max(0, x1 - BUFFER) + sx2,
                        max(0, y1 - BUFFER) + sy2
                    ], 0, None))
                vis_roi = vis[max(0, y1 - BUFFER):min(width, y2 + BUFFER),
Ejemplo n.º 5
0
                    targets.append((rect, 0, None))
                possible_targets[:] = []

        vis = img.copy()
        next_targets = []

        last_time = time.time()
        for rect, misses, _ in targets:
            x1, y1, x2, y2 = rect
            with the_lock:
                roi = low_image[max(0, y1-BUFFER):min(width, y2+BUFFER), max(0, x1-BUFFER):min(height, x2+BUFFER)]

            # draw_rects(vis, [[max(0, x1-BUFFER), max(0, y1-BUFFER), min(height, x2+BUFFER), min(width, y2+BUFFER)]], (255,0,0))

            subt = clock()
            s, c = size_and_center(rect)
            roi_copy = roi.copy()
            subtargets = detect(roi_copy, cascade_nested, size=(max(30, s[0]-REFIND_BUFFER), max(30, s[1]-REFIND_BUFFER)))
            if len(subtargets) == 1:
                sx1, sy1, sx2, sy2 = subtargets[0]
                if not contains(next_targets, subtargets[0]):
                    next_targets.append(([max(0, x1-BUFFER)+sx1,max(0, y1-BUFFER)+sy1,max(0, x1-BUFFER)+sx2,max(0, y1-BUFFER)+sy2], 0, None))
                vis_roi = vis[max(0, y1-BUFFER):min(width, y2+BUFFER), max(0, x1-BUFFER):min(height, x2+BUFFER)]
                draw_rects(vis_roi, subtargets, (0, 255, 0))
                cv.SaveImage("%s/roi/%s.pgm" % (output_dir, time.time()), cv.fromarray(roi_copy, allowND=True))
                cv.SaveImage("%s/face/%s.pgm" % (output_dir, time.time()), cv.fromarray(roi[sx1:sx2, sy1:sy2].copy(), allowND=True))
            else:
                # draw_rects(vis, [rect], (0,0,255))
                if misses < MAX_MISSES:
                    next_targets.append((rect, misses+1, None))