Ejemplo n.º 1
0
 def generate_csv_contrast(self, data_set, x_standard, f_standard):
     loadfile = load.LoadData(self.filepath)
     file = loadfile.read_csv()
     maxlength = len(file)
     pre = osp.splitext(osp.basename(self.filepath))[0]
     f_max = max(np.array(file)[:, 1])
     print(pre + ' start, max_f = ' + str(f_max))
     # split
     cnt = 0
     idx = 0
     while maxlength - 200 * cnt > 0:
         temp = file[idx:idx + 200]
         data = np.array(temp)
         x = data[:, 0]
         f = data[:, 1]
         idx += 200
         cnt += 1
         name = pre + '-' + str(cnt) + '.png'
         if util.zero_data(x, f):
             continue
         if name in data_set:
             x_add, f_add = normalization_each_device(x, f, f_max, False)
             # standard_name = standard.replace('.png')
             save_path = 'image2\\plus\\' + pre + '-' + str(cnt) + 'vs.png'
             process_contrast(x_add, f_add, x_standard, f_standard,
                              save_path)
Ejemplo n.º 2
0
 def generate_excel_map(self, content_list):
     loadfile = load.LoadData(self.filepath)
     data = loadfile.read_excel()
     pre = osp.splitext(osp.basename(self.filepath))[0]
     for cnt in range(len(data)):
         # for cnt in range(2):
         # skip exception
         if util.nan_data(data[cnt, 0]) | util.nan_data(data[cnt, 1]):
             continue
         x = data[cnt, 0].split(',')
         f = data[cnt, 1].split(',')
         if not util.match_data(x, f):
             continue
         x_array = np.array(x, dtype=float)
         f_array = np.array(f, dtype=float)
         if util.zero_data(x_array, f_array):
             continue
         # normalization_max
         x_new, f_new = normalization_each_image(x_array, f_array)
         image_dict = {
             "image_name":
             pre + '-' + str(cnt) + '.png',
             "x":
             ','.join(
                 str(x_new.tolist()).replace(']',
                                             '').replace('[',
                                                         '').split(',')),
             "f":
             ','.join(
                 str(f_new.tolist()).replace(']',
                                             '').replace('[',
                                                         '').split(','))
         }
         content_list.append(image_dict)
Ejemplo n.º 3
0
 def generate_csv_with_axis(self, base_path):
     loadfile = load.LoadData(self.filepath)
     file = loadfile.read_csv()
     maxlength = len(file)
     exception_zero = 0
     pre = osp.splitext(osp.basename(self.filepath))[0]
     f_max = max(np.array(file)[:, 1])
     print(pre + ' start, max_f = ' + str(f_max))
     # split
     cnt = 0
     idx = 0
     # image_cnt = 0
     while maxlength - 200 * cnt > 0:
         temp = file[idx:idx + 200]
         data = np.array(temp)
         x = data[:, 0]
         f = data[:, 1]
         idx += 200
         cnt += 1
         if cnt == 3:
             if util.zero_data(x, f):
                 exception_zero += 1
                 continue
             # x_new = np.empty([200, 1], dtype=int)
             # f_new = np.empty([200, 1], dtype=int)
             # for i in range(200):
             #     x_new[i] = int(x[i])
             #     f_new[i] = int(f[i])
             save_path = osp.join(base_path, pre + '-' + str(cnt) + '.png')
             process_with_axis(x, f, save_path, f_max)
Ejemplo n.º 4
0
 def generate_csv(self, base_path):
     loadfile = load.LoadData(self.filepath)
     file = loadfile.read_csv()
     maxlength = len(file)
     exception_zero = 0
     pre = osp.splitext(osp.basename(self.filepath))[0]
     f_max = max(np.array(file)[:, 1])
     print(pre + ' start, max_f = ' + str(f_max))
     # split
     cnt = 0
     idx = 0
     # image_cnt = 0
     while maxlength - 200 * cnt > 0:
         # while cnt < 5:
         temp = file[idx:idx + 200]
         data = np.array(temp)
         x = data[:, 0]
         f = data[:, 1]
         idx += 200
         cnt += 1
         # skip exception
         if util.zero_data(x, f):
             exception_zero += 1
             # print(pre + '-' + str(cnt) + ':zero')
             continue
         # normalization_max
         # x_new, f_new = self.normalization_each_image(x, f)
         # normalization_100
         x_new, f_new = normalization_each_device(x, f, f_max, False)
         # draw and save
         save_path = osp.join(base_path, pre + '-' + str(cnt) + '.png')
         process(x_new, f_new, save_path)
Ejemplo n.º 5
0
def augmentation_csv(filepath, data_set, num, base_path):
    loadfile = load.LoadData(filepath)
    file = loadfile.read_csv()
    maxlength = len(file)
    pre = osp.splitext(osp.basename(filepath))[0]
    f_max = max(np.array(file)[:, 1])
    print(pre + ' start, max_f = ' + str(f_max))
    # split
    cnt = 0
    idx = 0
    while maxlength - 200 * cnt > 0:
        # while cnt < 5:
        temp = file[idx:idx + 200]
        data = np.array(temp)
        x = data[:, 0]
        f = data[:, 1]
        idx += 200
        cnt += 1
        name = pre + '-' + str(cnt) + '.png'
        if util.zero_data(x, f):
            continue
        if name in data_set:
            # print(name)
            for k in range(num):
                x_add, f_add = normalization_each_device(x, f, f_max, True)
                add_path = osp.join(
                    base_path, pre + '-' + str(cnt) + '-' + str(k) + '.png')
                process(x_add, f_add, add_path)
Ejemplo n.º 6
0
 def generate_csv_map(self, content_list):
     loadfile = load.LoadData(self.filepath)
     file = loadfile.read_csv()
     maxlength = len(file)
     exception_zero = 0
     pre = osp.splitext(osp.basename(self.filepath))[0]
     f_max = max(np.array(file)[:, 1])
     print(pre + ' start, max_f = ' + str(f_max))
     # split
     cnt = 0
     idx = 0
     while maxlength - 200 * cnt > 0:
         # while cnt < 5:
         image_name = pre + '-' + str(cnt) + '.png'
         temp = file[idx:idx + 200]
         data = np.array(temp)
         x = data[:, 0]
         f = data[:, 1]
         idx += 200
         cnt += 1
         # skip exception
         if util.zero_data(x, f):
             exception_zero += 1
             print(pre + '-' + str(cnt) + ':zero')
             continue
         # normalization_max
         # x_new, f_new = self.normalization_each_image(x, f)
         # normalization_100
         x_new, f_new = normalization_each_device(x, f, f_max, False)
         image_dict = {
             "image_name":
             pre + '-' + str(cnt) + '.png',
             "x":
             ','.join(
                 str(x_new.tolist()).replace(']',
                                             '').replace('[',
                                                         '').split(',')),
             "f":
             ','.join(
                 str(f_new.tolist()).replace(']',
                                             '').replace('[',
                                                         '').split(','))
         }
         content_list.append(image_dict)
Ejemplo n.º 7
0
 def get_standard_excel(self, standard):
     loadfile = load.LoadData(self.filepath)
     data = loadfile.read_excel()
     pre = osp.splitext(osp.basename(self.filepath))[0]
     for cnt in range(len(data)):
         # skip exception
         if util.nan_data(data[cnt, 0]) | util.nan_data(data[cnt, 1]):
             continue
         x = data[cnt, 0].split(',')
         f = data[cnt, 1].split(',')
         if not util.match_data(x, f):
             continue
         x_array = np.array(x, dtype=float)
         f_array = np.array(f, dtype=float)
         if util.zero_data(x_array, f_array):
             continue
         name = pre + '-' + str(cnt) + '.png'
         if name == standard:
             x_standard, f_standard = normalization_each_image(
                 x_array, f_array)
             return x_standard, f_standard
Ejemplo n.º 8
0
 def generate_excel(self, base_path):
     loadfile = load.LoadData(self.filepath)
     data = loadfile.read_excel()
     exception_not_match = 0
     exception_null = 0
     exception_zero = 0
     pre = osp.splitext(osp.basename(self.filepath))[0]
     image_cnt = 0
     for cnt in range(len(data)):
         # for cnt in range(2):
         # skip exception
         if util.nan_data(data[cnt, 0]) | util.nan_data(data[cnt, 1]):
             exception_null += 1
             print(pre + '-' + str(cnt) + ':null')
             continue
         x = data[cnt, 0].split(',')
         f = data[cnt, 1].split(',')
         if not util.match_data(x, f):
             exception_not_match += 1
             print(pre + '-' + str(cnt) + ':not match, x has ' +
                   str(len(x)) + 'points and f has ' + str(len(f)) +
                   'points')
             continue
         x_array = np.array(x, dtype=float)
         f_array = np.array(f, dtype=float)
         if util.zero_data(x_array, f_array):
             exception_zero += 1
             print(pre + '-' + str(cnt) + ':zero')
             continue
         # normalization_max
         x_new, f_new = normalization_each_image(x_array, f_array)
         # normalization_100
         # x_new, f_new = self.normalization_each_device(x_array, f_array, 1000, False)
         # draw and save
         save_path = osp.join(base_path, pre + '-' + str(cnt) + '.png')
         process(x_new, f_new, save_path)
         image_cnt += 1
     print(pre + ' num = ' + str(exception_not_match) + ' ; ' +
           str(exception_null) + ' ; ' + str(exception_zero) + ' ; ' +
           str(image_cnt))
Ejemplo n.º 9
0
 def generate_excel_contrast(self, data_set, x_standard, f_standard):
     loadfile = load.LoadData(self.filepath)
     data = loadfile.read_excel()
     pre = osp.splitext(osp.basename(self.filepath))[0]
     for cnt in range(len(data)):
         # skip exception
         if util.nan_data(data[cnt, 0]) | util.nan_data(data[cnt, 1]):
             continue
         x = data[cnt, 0].split(',')
         f = data[cnt, 1].split(',')
         if not util.match_data(x, f):
             continue
         x_array = np.array(x, dtype=float)
         f_array = np.array(f, dtype=float)
         if util.zero_data(x_array, f_array):
             continue
         name = pre + '-' + str(cnt) + '.png'
         if name in data_set:
             x_new, f_new = normalization_each_image(x_array, f_array)
             # standard_name = standard.replace('.png')
             save_path = 'image2\\plus\\' + pre + '-' + str(cnt) + 'vs.png'
             process_contrast(x_new, f_new, x_standard, f_standard,
                              save_path)
Ejemplo n.º 10
0
 def get_standard_csv(self, standard):
     loadfile = load.LoadData(self.filepath)
     file = loadfile.read_csv()
     maxlength = len(file)
     pre = osp.splitext(osp.basename(self.filepath))[0]
     f_max = max(np.array(file)[:, 1])
     # print('standard image source is' + pre + ', max_f is ' + str(f_max))
     # split
     cnt = 0
     idx = 0
     while maxlength - 200 * cnt > 0:
         temp = file[idx:idx + 200]
         data = np.array(temp)
         x = data[:, 0]
         f = data[:, 1]
         idx += 200
         cnt += 1
         name = pre + '-' + str(cnt) + '.png'
         if util.zero_data(x, f):
             continue
         if name == standard:
             x_standard, f_standard = normalization_each_device(
                 x, f, f_max, False)
             return x_standard, f_standard