Ejemplo n.º 1
0
 def _predictDistributions(
         self, in_datas: List[TacticContext]) -> torch.FloatTensor:
     assert self._tokenizer
     assert self._embedding
     assert self.training_args
     goals_batch = [
         normalizeSentenceLength(self._tokenizer.toTokenList(goal),
                                 self.training_args.max_length)
         for _, _, _, goal in in_datas
     ]
     hyps = [
         get_closest_hyp(hyps, goal, self.training_args.max_length)
         for _, _, hyps, goal in in_datas
     ]
     hyp_types = [serapi_instance.get_hyp_type(hyp) for hyp in hyps]
     hyps_batch = [
         normalizeSentenceLength(self._tokenizer.toTokenList(hyp_type),
                                 self.training_args.max_length)
         for hyp_type in hyp_types
     ]
     word_features_batch = [
         self._get_word_features(in_data) for in_data in in_datas
     ]
     vec_features_batch = [
         self._get_vec_features(in_data) for in_data in in_datas
     ]
     stem_distribution = self._model(LongTensor(goals_batch),
                                     LongTensor(hyps_batch),
                                     FloatTensor(vec_features_batch),
                                     LongTensor(word_features_batch))
     return stem_distribution
Ejemplo n.º 2
0
 def _predictStemDistributions(self, in_datas : List[TacticContext]) \
     -> torch.FloatTensor:
     word_features_batch = LongTensor(
         [self._get_word_features(in_data) for in_data in in_datas])
     vec_features_batch = FloatTensor(
         [self._get_vec_features(in_data) for in_data in in_datas])
     encoded_word_features = self._model.word_features_encoder(
         word_features_batch)
     stem_distribution = \
         self._softmax(self._model.features_classifier(torch.cat((
             encoded_word_features, vec_features_batch), dim=1)))
     return stem_distribution
Ejemplo n.º 3
0
 def predict_stems(self, k: int,
                   word_features: List[List[int]],
                   vec_features: List[List[float]]
                   ) -> Tuple[torch.FloatTensor, torch.LongTensor]:
     assert self._model
     assert len(word_features) == len(vec_features)
     batch_size = len(word_features)
     stem_distribution = self._model.stem_classifier(
         LongTensor(word_features), FloatTensor(vec_features))
     stem_probs, stem_idxs = stem_distribution.topk(k)
     assert stem_probs.size() == torch.Size([batch_size, k])
     assert stem_idxs.size() == torch.Size([batch_size, k])
     return stem_probs, stem_idxs
Ejemplo n.º 4
0
 def hyp_name_scores(self,
                     stem_idxs: torch.LongTensor,
                     tokenized_goal: List[int],
                     tokenized_premises: List[List[int]],
                     premise_features: List[List[float]]
                     ) -> torch.FloatTensor:
     assert self._model
     assert len(stem_idxs.size()) == 1
     stem_width = stem_idxs.size()[0]
     num_hyps = len(tokenized_premises)
     encoded_goals = self._model.goal_encoder(LongTensor([tokenized_goal]))
     hyp_arg_values = self.runHypModel(stem_idxs.unsqueeze(0),
                                       encoded_goals,
                                       LongTensor([tokenized_premises]),
                                       FloatTensor([premise_features]))
     assert hyp_arg_values.size() == torch.Size([1, stem_width, num_hyps])
     return hyp_arg_values
Ejemplo n.º 5
0
 def _predictDistribution(self, in_data : TacticContext) -> \
     Tuple[torch.FloatTensor, str]:
     if len(in_data.hypotheses) > 0:
         relevant_hyp, relevance = \
             max([(hyp,
                   term_relevance(in_data.goal,
                                        serapi_instance.get_hyp_type(hyp)))
                  for hyp in in_data.hypotheses], key=lambda x: x[1])
     else:
         relevant_hyp = ":"
         relevance = 0
     encoded_hyp = self._encode_term(serapi_instance.get_hyp_type(relevant_hyp))
     encoded_relevance = [relevance]
     encoded_goal = self._encode_term(in_data.goal)
     stem_distribution = self._run_model(encoded_hyp, encoded_relevance, encoded_goal)
     return FloatTensor(stem_distribution), \
         serapi_instance.get_first_var_in_hyp(relevant_hyp)
Ejemplo n.º 6
0
 def _getBatchPredictionLoss(self, data_batch: Sequence[torch.Tensor],
                             model: CopyArgModel) -> torch.FloatTensor:
     goals_batch, word_features_batch, vec_features_batch, \
         stems_batch, arg_idxs_batch = \
         cast(Tuple[torch.LongTensor, torch.FloatTensor,
                    torch.LongTensor, torch.LongTensor,
                    torch.LongTensor],
              data_batch)
     batch_size = goals_batch.size()[0]
     encoded_word_features = model.word_features_encoder(
         maybe_cuda(Variable(word_features_batch)))
     catted_data = torch.cat(
         (encoded_word_features, maybe_cuda(Variable(vec_features_batch))),
         dim=1)
     stemDistributions = model.features_classifier(catted_data)
     stem_var = maybe_cuda(Variable(stems_batch)).view(batch_size)
     argTokenIdxDistributions = model.find_arg_rnn(goals_batch, stems_batch)
     argToken_var = maybe_cuda(Variable(arg_idxs_batch)).view(batch_size)
     loss = FloatTensor([0.])
     loss += self._criterion(stemDistributions, stem_var)
     loss += self._criterion(argTokenIdxDistributions, argToken_var)
     return loss
Ejemplo n.º 7
0
    def _getBatchPredictionLoss(
            self, arg_values: Namespace, batch: Sequence[torch.Tensor],
            model: FeaturesPolyArgModel) -> torch.FloatTensor:
        tokenized_hyp_types_batch, hyp_features_batch, num_hyps_batch, \
            tokenized_goals_batch, goal_masks_batch, \
            word_features_batch, vec_features_batch, \
            stem_idxs_batch, arg_total_idxs_batch = \
                cast(Tuple[torch.LongTensor, torch.FloatTensor, torch.LongTensor,
                           torch.LongTensor, torch.ByteTensor,
                           torch.LongTensor, torch.FloatTensor,
                           torch.LongTensor, torch.LongTensor],
                     data_batch)
        batch_size = tokenized_goals_batch.size()[0]
        goal_size = tokenized_goals_batch.size()[1]
        stemDistributions = model.stem_classifier(word_features_batch,
                                                  vec_features_batch)
        num_stem_poss = stemDistributions.size()[1]
        stem_width = min(arg_values.max_beam_width, num_stem_poss)
        stem_var = maybe_cuda(Variable(stem_idxs_batch))
        predictedProbs, predictedStemIdxs = stemDistributions.topk(stem_width)
        mergedStemIdxs = []
        for stem_idx, predictedStemIdxList in zip(stem_idxs_batch,
                                                  predictedStemIdxs):
            if stem_idx.item() in predictedStemIdxList:
                mergedStemIdxs.append(predictedStemIdxList)
            else:
                mergedStemIdxs.append(
                    torch.cat((maybe_cuda(stem_idx.view(1)),
                               predictedStemIdxList[:stem_width - 1])))
        mergedStemIdxsT = torch.stack(mergedStemIdxs)
        correctPredictionIdxs = torch.LongTensor([
            list(idxList).index(stem_idx)
            for idxList, stem_idx in zip(mergedStemIdxs, stem_var)
        ])
        if arg_values.hyp_rnn:
            tokenized_hyps_var = maybe_cuda(
                Variable(tokenized_hyp_types_batch))
        else:
            tokenized_hyps_var = maybe_cuda(
                Variable(torch.zeros_like(tokenized_hyp_types_batch)))

        if arg_values.hyp_features:
            hyp_features_var = maybe_cuda(Variable(hyp_features_batch))
        else:
            hyp_features_var = maybe_cuda(
                Variable(torch.zeros_like(hyp_features_batch)))

        goal_arg_values = model.goal_args_model(
            mergedStemIdxsT.view(batch_size * stem_width),
            tokenized_goals_batch.view(batch_size, 1, goal_size).expand(-1, stem_width, -1)
            .contiguous().view(batch_size * stem_width, goal_size))\
            .view(batch_size, stem_width, goal_size + 1)
        goal_arg_values = torch.where(
            maybe_cuda(
                goal_masks_batch.view(batch_size, 1,
                                      arg_values.max_length + 1)).expand(
                                          -1, stem_width, -1), goal_arg_values,
            maybe_cuda(torch.full_like(goal_arg_values, -float("Inf"))))
        encoded_goals = model.goal_encoder(tokenized_goals_batch)

        hyp_lists_length = tokenized_hyp_types_batch.size()[1]
        hyp_length = tokenized_hyp_types_batch.size()[2]
        hyp_features_size = hyp_features_batch.size()[2]
        encoded_goal_size = encoded_goals.size()[1]

        encoded_goals_expanded = \
            encoded_goals.view(batch_size, 1, 1, encoded_goal_size)\
            .expand(-1, stem_width, hyp_lists_length, -1).contiguous()\
            .view(batch_size * stem_width * hyp_lists_length, encoded_goal_size)
        if not arg_values.goal_rnn:
            encoded_goals_expanded = torch.zeros_like(encoded_goals_expanded)
        stems_expanded = \
            mergedStemIdxsT.view(batch_size, stem_width, 1)\
            .expand(-1, -1, hyp_lists_length).contiguous()\
            .view(batch_size * stem_width * hyp_lists_length)
        hyp_arg_values_concatted = \
            model.hyp_model(stems_expanded,
                            encoded_goals_expanded,
                            tokenized_hyps_var
                            .view(batch_size, 1, hyp_lists_length, hyp_length)
                            .expand(-1, stem_width, -1, -1).contiguous()
                            .view(batch_size * stem_width * hyp_lists_length,
                                  hyp_length),
                            hyp_features_var
                            .view(batch_size, 1, hyp_lists_length, hyp_features_size)
                            .expand(-1, stem_width, -1, -1).contiguous()
                            .view(batch_size * stem_width * hyp_lists_length,
                                  hyp_features_size))
        assert hyp_arg_values_concatted.size() == torch.Size(
            [batch_size * stem_width * hyp_lists_length,
             1]), hyp_arg_values_concatted.size()
        hyp_arg_values = hyp_arg_values_concatted.view(batch_size, stem_width,
                                                       hyp_lists_length)
        total_arg_values = torch.cat((goal_arg_values, hyp_arg_values), dim=2)
        num_probs = hyp_lists_length + goal_size + 1
        total_arg_distribution = \
            self._softmax(total_arg_values.view(batch_size, stem_width * num_probs))
        total_arg_var = maybe_cuda(Variable(arg_total_idxs_batch +
                                            (correctPredictionIdxs * num_probs)))\
                                            .view(batch_size)
        loss = FloatTensor([0.])
        loss += self._criterion(stemDistributions, stem_var)
        loss += self._criterion(total_arg_distribution, total_arg_var)
        return loss
Ejemplo n.º 8
0
    def predictKTactics(self, context: TacticContext,
                        k: int) -> List[Prediction]:
        assert self.training_args
        assert self._model

        num_stem_poss = get_num_tokens(self._metadata)
        stem_width = min(self.training_args.max_beam_width, num_stem_poss,
                         k**2)

        tokenized_premises, hyp_features, \
            nhyps_batch, tokenized_goal, \
            goal_mask, \
            word_features, vec_features = \
                sample_fpa(extract_dataloader_args(self.training_args),
                           self._metadata,
                           context.relevant_lemmas,
                           context.prev_tactics,
                           context.hypotheses,
                           context.goal)

        num_hyps = nhyps_batch[0]

        stem_distribution = self._model.stem_classifier(
            LongTensor(word_features), FloatTensor(vec_features))
        stem_certainties, stem_idxs = stem_distribution.topk(stem_width)

        goals_batch = LongTensor(tokenized_goal)
        goal_arg_values = self._model.goal_args_model(
            stem_idxs.view(1 * stem_width),
            goals_batch.view(1, 1, self.training_args.max_length)
            .expand(-1, stem_width, -1).contiguous()
            .view(1 * stem_width,
                  self.training_args.max_length))\
                                     .view(1, stem_width,
                                           self.training_args.max_length + 1)
        goal_arg_values = torch.where(
            torch.ByteTensor(goal_mask).view(1, 1,
                                             self.training_args.max_length +
                                             1).expand(-1, stem_width, -1),
            goal_arg_values, torch.full_like(goal_arg_values, -float("Inf")))
        assert goal_arg_values.size() == torch.Size([1, stem_width,
                                                     self.training_args.max_length + 1]),\
            "goal_arg_values.size(): {}; stem_width: {}".format(goal_arg_values.size(),
                                                                stem_width)

        num_probs = 1 + num_hyps + self.training_args.max_length
        goal_symbols = get_fpa_words(context.goal)
        num_valid_probs = (1 + num_hyps + len(goal_symbols)) * stem_width
        if num_hyps > 0:
            encoded_goals = self._model.goal_encoder(goals_batch)\
                                       .view(1, 1, self.training_args.hidden_size)

            hyps_batch = LongTensor(tokenized_premises)
            assert hyps_batch.size() == torch.Size([1, num_hyps,
                                                    self.training_args.max_length]), \
                                                    (hyps_batch.size(),
                                                     num_hyps,
                                                     self.training_args.max_length)
            hypfeatures_batch = FloatTensor(hyp_features)
            assert hypfeatures_batch.size() == \
                torch.Size([1, num_hyps, hypFeaturesSize()]), \
                (hypfeatures_batch.size(), num_hyps, hypFeaturesSize())
            hyp_arg_values = self.runHypModel(stem_idxs, encoded_goals,
                                              hyps_batch, hypfeatures_batch)
            assert hyp_arg_values.size() == \
                torch.Size([1, stem_width, num_hyps])
            total_values = torch.cat((goal_arg_values, hyp_arg_values), dim=2)
        else:
            total_values = goal_arg_values
        all_prob_batches = self._softmax((total_values +
                                          stem_certainties.view(1, stem_width, 1)
                                          .expand(-1, -1, num_probs))
                                         .contiguous()
                                         .view(1, stem_width * num_probs))\
                               .view(stem_width * num_probs)

        final_probs, final_idxs = all_prob_batches.topk(k)
        assert not torch.isnan(final_probs).any()
        assert final_probs.size() == torch.Size([k])
        row_length = self.training_args.max_length + num_hyps + 1
        stem_keys = final_idxs // row_length
        assert stem_keys.size() == torch.Size([k])
        assert stem_idxs.size() == torch.Size([1,
                                               stem_width]), stem_idxs.size()
        prediction_stem_idxs = stem_idxs.view(stem_width).index_select(
            0, stem_keys)
        assert prediction_stem_idxs.size() == torch.Size([k]), \
            prediction_stem_idxs.size()
        arg_idxs = final_idxs % row_length
        assert arg_idxs.size() == torch.Size([k])

        if self.training_args.lemma_args:
            all_hyps = context.hypotheses + context.relevant_lemmas
        else:
            all_hyps = context.hypotheses
        return [
            Prediction(
                decode_fpa_result(extract_dataloader_args(self.training_args),
                                  self._metadata, all_hyps, context.goal,
                                  stem_idx.item(), arg_idx.item()),
                math.exp(prob)) for stem_idx, arg_idx, prob in islice(
                    zip(prediction_stem_idxs, arg_idxs, final_probs),
                    min(k, num_valid_probs))
        ]
Ejemplo n.º 9
0
    def predictKTactics_batch(self, context_batch: List[TacticContext],
                              k: int) \
            -> List[List[Prediction]]:
        assert self.training_args
        assert self._model

        num_stem_poss = get_num_tokens(self._metadata)
        stem_width = min(self.training_args.max_beam_width, num_stem_poss,
                         k**2)
        batch_size = len(context_batch)

        tprems_batch, pfeat_batch, \
            nhyps_batch, tgoals_batch, \
            goal_masks_batch, \
            wfeats_batch, vfeats_batch = \
            sample_fpa_batch(extract_dataloader_args(self.training_args),
                             self._metadata,
                             [context_py2r(context)
                              for context in context_batch])
        for tprem, pfeat, nhyp, tgoal, masks, wfeat, vfeat, context \
            in zip(tprems_batch, pfeat_batch,
                   nhyps_batch, tgoals_batch,
                   goal_masks_batch, wfeats_batch,
                   vfeats_batch, context_batch):
            s_tprem, s_pfeat, s_nhyp, s_tgoal, s_masks, s_wfeat, s_vfeat = \
                sample_fpa(extract_dataloader_args(self.training_args),
                           self._metadata,
                           context.relevant_lemmas,
                           context.prev_tactics,
                           context.hypotheses,
                           context.goal)
            assert len(s_tprem) == 1
            assert len(tprem) == len(s_tprem[0])
            for p1, p2 in zip(tprem, s_tprem[0]):
                assert p1 == p2, (p1, p2)
            assert len(s_pfeat) == 1
            assert len(pfeat) == len(s_pfeat[0])
            for f1, f2 in zip(pfeat, s_pfeat[0]):
                assert f1 == f2, (f1, f2)
            assert s_nhyp[0] == nhyp, (s_nhyp[0], nhyp)
            assert s_tgoal[0] == tgoal, (s_tgoal[0], tgoal)
            assert s_masks[0] == masks, (s_masks[0], masks)
            assert s_wfeat[0] == wfeat, (s_wfeat[0], wfeat)
            assert s_vfeat[0] == vfeat, (s_vfeat[0], vfeat)

        stem_distribution = self._model.stem_classifier(
            LongTensor(wfeats_batch), FloatTensor(vfeats_batch))
        stem_certainties_batch, stem_idxs_batch = stem_distribution.topk(
            stem_width)

        goals_batch = LongTensor(tgoals_batch)

        goal_arg_values = self._model.goal_args_model(
            stem_idxs_batch.view(batch_size * stem_width),
            goals_batch.view(batch_size, 1, self.training_args.max_length)
            .expand(-1, stem_width, -1).contiguous()
            .view(batch_size * stem_width,
                  self.training_args.max_length))\
                                     .view(batch_size, stem_width,
                                           self.training_args.max_length + 1)

        goal_arg_values = torch.where(
            torch.ByteTensor(goal_masks_batch).view(
                batch_size, 1,
                self.training_args.max_length + 1).expand(-1, stem_width, -1),
            goal_arg_values, torch.full_like(goal_arg_values, -float("Inf")))

        encoded_goals_batch = self._model.goal_encoder(goals_batch)

        stems_expanded_batch = torch.cat([
            stem_idxs.view(1, stem_width).expand(
                num_hyps, stem_width).contiguous().view(num_hyps * stem_width)
            for stem_idxs, num_hyps, in zip(stem_idxs_batch, nhyps_batch)
        ])
        egoals_expanded_batch = torch.cat([
            encoded_goal.view(1, self.training_args.hidden_size).expand(
                num_hyps * stem_width, -1).contiguous()
            for encoded_goal, num_hyps in zip(encoded_goals_batch, nhyps_batch)
        ])
        tprems_expanded_batch = torch.cat([
            LongTensor(tpremises).view(
                1, -1, self.training_args.max_length).expand(
                    stem_width, -1,
                    -1).contiguous().view(-1, self.training_args.max_length)
            for tpremises in tprems_batch
        ])
        pfeat_expanded_batch = torch.cat([
            FloatTensor(premise_features).view(1, num_hyps, 2).expand(
                stem_width, -1, -1).contiguous().view(num_hyps * stem_width, 2)
            for premise_features, num_hyps in zip(pfeat_batch, nhyps_batch)
        ])

        prem_arg_values = self._model.hyp_model(stems_expanded_batch,
                                                egoals_expanded_batch,
                                                tprems_expanded_batch,
                                                pfeat_expanded_batch)

        prem_arg_values_split = prem_arg_values.split(
            [num_hyps * stem_width for num_hyps in nhyps_batch])
        total_values_list = [
            torch.cat((goal_values, prem_values.view(stem_width, -1)),
                      dim=1) for goal_values, prem_values in zip(
                          goal_arg_values, prem_arg_values_split)
        ]
        all_probs_list = [
            self._softmax((total_values + stem_certainties.view(
                stem_width, 1).expand_as(total_values)).contiguous().view(
                    1, -1)).view(-1) for total_values, stem_certainties in zip(
                        total_values_list, stem_certainties_batch)
        ]

        final_probs_list, final_idxs_list = zip(
            *[probs.topk(k) for probs in all_probs_list])
        stem_keys_list = [
            final_idxs // (self.training_args.max_length + num_hyps + 1)
            for final_idxs, num_hyps in zip(final_idxs_list, nhyps_batch)
        ]

        stem_idxs_list = [
            stem_idxs.view(stem_width).index_select(0, stem_keys)
            for stem_idxs, stem_keys in zip(stem_idxs_batch, stem_keys_list)
        ]

        arg_idxs_list = [
            final_idxs % (self.training_args.max_length + num_hyps + 1)
            for final_idxs, num_hyps in zip(final_idxs_list, nhyps_batch)
        ]

        predictions = [[
            Prediction(
                decode_fpa_result(extract_dataloader_args(self.training_args),
                                  self._metadata,
                                  context.hypotheses + context.relevant_lemmas,
                                  context.goal,
                                  stem_idx.item(), arg_idx.item()),
                math.exp(prob)) for stem_idx, arg_idx, prob in islice(
                    zip(stem_idxs, arg_idxs, final_probs),
                    min(k, 1 + num_hyps + len(get_fpa_words(context.goal))))
        ] for stem_idxs, arg_idxs, final_probs, context, num_hyps in zip(
            stem_idxs_list, arg_idxs_list, final_probs_list, context_batch,
            nhyps_batch)]

        for context, pred_list in zip(context_batch, predictions):
            for batch_pred, single_pred in zip(
                    pred_list, self.predictKTactics(context, k)):
                assert batch_pred.prediction == single_pred.prediction, \
                    (batch_pred, single_pred)

        return predictions
Ejemplo n.º 10
0
 def predict(self, inputs: List[List[float]]) -> List[List[float]]:
     with self._lock:
         return self._model(FloatTensor(inputs)).data
Ejemplo n.º 11
0
def decodeKTactics(decoder : DecoderRNN, encoder_hidden : torch.FloatTensor,
                   beam_width : int, max_length : int):
    v = decoder.output_size
    pos_index = Variable(LongTensor([0]) * beam_width).view(-1, 1)

    hidden = _inflate(encoder_hidden, beam_width)

    sequence_scores = FloatTensor(beam_width, 1)
    sequence_scores.fill_(-float('Inf'))
    sequence_scores.index_fill_(0, LongTensor([0]), 0.0)
    sequence_scores = Variable(sequence_scores)

    input_var = Variable(LongTensor([[SOS_token] * beam_width]))

    stored_predecessors = list()
    stored_emitted_symbols = list()

    for j in range(max_length):
        decoder_output, hidden = decoder(input_var, hidden)

        sequence_scores = _inflate(sequence_scores, v)
        sequence_scores += decoder_output

        scores, candidates = sequence_scores.view(1, -1).topk(beam_width)

        input_var = (candidates % v).view(1, beam_width)
        sequence_scores = scores.view(beam_width, 1)

        predecessors = (candidates / v +
                        pos_index.expand_as(candidates)).view(beam_width, 1)
        hidden = hidden.index_select(1, cast(torch.LongTensor, predecessors.squeeze()))

        eos_indices = input_var.data.eq(EOS_token)
        if eos_indices.nonzero().dim() > 0:
            sequence_scores.data.masked_fill_(torch.transpose(eos_indices, 0, 1),
                                              -float('inf'))

        stored_predecessors.append(predecessors)
        stored_emitted_symbols.append(torch.transpose(input_var, 0, 1))


    # Trace back from the final three highest scores
    _, next_idxs = sequence_scores.view(beam_width).sort(descending=True)
    seqs = [] # type: List[List[SomeLongTensor]]
    eos_found = 0
    for i in range(max_length - 1, -1, -1):
        # The next column of symbols from the end
        next_symbols = stored_emitted_symbols[i].view(beam_width) \
                                                .index_select(0, next_idxs).data
        # The predecessors of that column
        next_idxs = stored_predecessors[i].view(beam_width).index_select(0, next_idxs)

        # Handle sequences that ended early
        eos_indices = stored_emitted_symbols[i].data.squeeze(1).eq(EOS_token).nonzero()
        if eos_indices.dim() > 0:
            for j in range(eos_indices.size(0)-1, -1, -1):
                idx = eos_indices[j]

                res_k_idx = beam_width - (eos_found % beam_width) - 1
                eos_found += 1
                res_idx = res_k_idx

                next_idxs[res_idx] = stored_predecessors[i][idx[0]]
                next_symbols[res_idx] = stored_emitted_symbols[i][idx[0]].data[0]

        # Commit the result
        seqs.insert(0, next_symbols)

    # Transpose
    int_seqs = [[data[i][0] for data in seqs] for i in range(beam_width)]
    # Cut off EOS tokens
    int_seqs = [list(takewhile(lambda x: x != EOS_token, seq)) for seq in int_seqs]

    return int_seqs
Ejemplo n.º 12
0
 def _run_model(self, hyp : List[float], rel : List[float], goal : List[float]) -> \
     torch.FloatTensor:
     # return FloatTensor(self._model.predict_log_proba([hyp])[0])
     # return FloatTensor(self._model.predict_log_proba([goal])[0])
     return FloatTensor(self._model.predict([list(hyp) + rel + list(goal)])[0])