Ejemplo n.º 1
0
 def __init__(self,
              n_estimator=10,
              learning_rate=0.01,
              min_sample=2,
              min_gain=0.1,
              max_depth=10):
     super(GBDTRegressionScratch, self).__init__(n_estimator, learning_rate)
     # 回归树损失函数维平方损失
     self._loss = SquareLoss()
     for _ in range(self._n_estimator):
         tree = CARTRegressionScratch(min_sample, min_gain, max_depth)
         self._trees.append(tree)
Ejemplo n.º 2
0
class GBDTRegressionScratch(GBDTScratch):
    def __init__(self,
                 n_estimator=10,
                 learning_rate=0.01,
                 min_sample=2,
                 min_gain=0.1,
                 max_depth=10):
        super(GBDTRegressionScratch, self).__init__(n_estimator, learning_rate)
        # 回归树损失函数维平方损失
        self._loss = SquareLoss()
        for _ in range(self._n_estimator):
            tree = CARTRegressionScratch(min_sample, min_gain, max_depth)
            self._trees.append(tree)

    def fit(self, X, y):
        """模型训练"""
        n_sample = y.shape[0]
        residual_pred = np.zeros(n_sample)
        for i in range(self._n_estimator):
            residual_gradient = self._loss.calc_gradient(y, residual_pred)
            # 每棵树以残差为目标进行训练
            self._trees[i].fit(X, residual_gradient)
            residual_update = np.zeros(n_sample)
            for j in range(n_sample):
                residual_update[j] = self._trees[i].predict(X[j])
            residual_pred -= self._lr * residual_update

    def predict(self, x):
        """给定输入样本,预测输出"""
        y_pred = 0
        for tree in self._trees:
            residual_update = tree.predict(x)
            y_pred -= self._lr * residual_update
        return y_pred