np.set_printoptions(precision=3) mode = raw_input("1: Train\n2: Load\n3: Live\n") exp = theanets.Experiment( theanets.feedforward.Regressor, layers=(config.IMG_W * config.IMG_H, 500, 1) ) if mode == "1": trainer.train(exp) if mode == "2": exp = exp.load(path="net.data") print "Manual validation:" for file in glob.glob("data/manual/*.jpg"): image = util_image.load(file) input = util_image.data(image) input = input.reshape(1, len(input)) output = exp.predict(input) print "Prediction for ", file, " = ", output if mode == "3": exp = exp.load(path="net.data") session = util_guru.start() while True: image = util_guru.download(session) print "Opening image..." image.show() input = util_image.get_single_input_data(image) output = exp.predict(input)[0][0] print "Crowded Level: ", output