Ejemplo n.º 1
0
    def make_ELMo(self):
        # Location of pretrained BiLM for the specified language
        # TBD check if ELMo language resources are present
        description = self._get_description('elmo-en')
        if description is not None:
            self.lang = description["lang"]
            vocab_file = description["path-vocab"]
            options_file = description["path-config"]
            weight_file = description["path_weights"]

            print('init ELMo')

            # Create a Batcher to map text to character ids
            self.batcher = Batcher(vocab_file, 50)

            # Build the biLM graph.
            self.bilm = BidirectionalLanguageModel(options_file, weight_file)

            # Input placeholders to the biLM.
            self.character_ids = tf.placeholder('int32',
                                                shape=(None, None, 50))
            self.embeddings_op = self.bilm(self.character_ids)

            with tf.variable_scope('', reuse=tf.AUTO_REUSE):
                # the reuse=True scope reuses weights from the whole context
                self.elmo_input = weight_layers('input',
                                                self.embeddings_op,
                                                l2_coef=0.0)
Ejemplo n.º 2
0
    def dump_ELMo_token_embeddings(self, x_train):
        if not self.use_ELMo:
            print(
                "Warning: ELMo embeddings dump requested but embeddings object wrongly initialised"
            )
            return

        description = self._get_description('elmo-en')
        if description is not None:
            print("Building ELMo token dump")

            self.lang = description["lang"]
            options_file = description["path-config"]
            weight_file = description["path_weights"]
            working_path = description["path-dump"]

            all_tokens = set(['<S>', '</S>'])
            for i in range(0, len(x_train)):
                # as it is training, it is already tokenized
                tokens = x_train[i]
                for token in tokens:
                    if token not in all_tokens:
                        all_tokens.add(token)

            vocab_file = os.path.join(working_path, 'vocab_small.txt')
            with open(vocab_file, 'w') as fout:
                fout.write('\n'.join(all_tokens))

            tf.reset_default_graph()
            token_embedding_file = os.path.join(working_path,
                                                'elmo_token_embeddings.hdf5')
            dump_token_embeddings(vocab_file, options_file, weight_file,
                                  token_embedding_file)
            tf.reset_default_graph()

            self.batcher_token_dump = TokenBatcher(vocab_file)

            self.bilm_token_dump = BidirectionalLanguageModel(
                options_file,
                weight_file,
                use_character_inputs=False,
                embedding_weight_file=token_embedding_file)

            self.token_ids = tf.placeholder('int32', shape=(None, None))
            self.embeddings_op_token_dump = self.bilm_token_dump(
                self.token_ids)
            """
            with tf.variable_scope('', reuse=tf.AUTO_REUSE):
                # the reuse=True scope reuses weights from the whole context 
                self.elmo_input_token_dump = weight_layers('input', self.embeddings_op_token_dump, l2_coef=0.0)
            """
            print("ELMo token dump completed")
Ejemplo n.º 3
0
    def make_ELMo(self):
        # Location of pretrained BiLM for the specified language
        # TBD check if ELMo language resources are present
        description = self._get_description('elmo-ko')
        if description is not None:
            self.lang = description["lang"]
            vocab_file = description["path-vocab"]
            options_file = description["path-config"]
            weight_file = description["path_weights"]

            print('init ELMo')

            # Create a Batcher to map text to character ids
            self.batcher = Batcher(vocab_file, 50)

            # Build the biLM graph.
            self.bilm = BidirectionalLanguageModel(options_file, weight_file)