def mooring_1dvar(file_in):
    """Standard EcoFOCI Mooring .nc files with one dimensional parameters as a function of time
    such as temperature at a particular level
    Timestep of data is assumed to be in fractions of a day"""
    #dir_path = os.path.dirname(os.path.abspath(__file__))    
    ncfile = file_in
    
    ###nc readin/out
    nchandle = ncutil.ncopen(ncfile)
    params = constants.nc_vars_moor()
    ncdata = ncutil.ncreadfile(nchandle, params)
    ncutil.ncclose(nchandle)

    ###data massaging
    #time_all = ncdata[:,0] + ncdata[:,1]
    xx = ncutil.nc_missing(ncdata[:,9], flag=1e35, setfill='Zero')
    pytime = util.EPICdate2udunits(ncdata[:,0], ncdata[:,1])
    

    dt = 1. / pytime['interval_min'] #data is 4 times daily
    time_base = 'days'
    time = pytime['timeint']
    #time = util.subsample(time, int(pytime.get('interval_min')) / 4)

    variance = np.var(xx)
    #normalize
    print 'Variance = %s ' % (variance)
    x = (xx - np.mean(xx)) / np.sqrt(variance)
    variance = np.var(x)

    return (xx, x,dt,np.array(time), variance, time_base)  
def mooring_1dvar(file_in):
    """Standard EcoFOCI Mooring .nc files with one dimensional parameters as a function of time
    such as temperature at a particular level
    Timestep of data is assumed to be in fractions of a day"""
    #dir_path = os.path.dirname(os.path.abspath(__file__))
    ncfile = file_in

    ###nc readin/out
    nchandle = ncutil.ncopen(ncfile)
    params = constants.nc_vars_moor()
    ncdata = ncutil.ncreadfile(nchandle, params)
    ncutil.ncclose(nchandle)

    ###data massaging
    #time_all = ncdata[:,0] + ncdata[:,1]
    xx = ncutil.nc_missing(ncdata[:, 9], flag=1e35, setfill='Zero')
    pytime = util.EPICdate2udunits(ncdata[:, 0], ncdata[:, 1])

    dt = 1. / pytime['interval_min']  #data is 4 times daily
    time_base = 'days'
    time = pytime['timeint']
    #time = util.subsample(time, int(pytime.get('interval_min')) / 4)

    variance = np.var(xx)
    #normalize
    print 'Variance = %s ' % (variance)
    x = (xx - np.mean(xx)) / np.sqrt(variance)
    variance = np.var(x)

    return (xx, x, dt, np.array(time), variance, time_base)
def reanaly_sfc_press(file_in):


    ncfile = file_in
    
    ###nc readin/out
    nchandle = Dataset(ncfile,'r')
    params = ['time','lat', 'lon', 'pres']
    time = nchandle.variables[params[0]][:]
    lat = nchandle.variables[params[1]][:]
    lon = nchandle.variables[params[2]][:]
    data = nchandle.variables[params[3]][:,:]
    ncutil.ncclose(nchandle)
    
    site_loc = [52.5, 190.0] #52.8, -169.3 for M6 Samalga mooring
    ind_lat = np.where(lat == site_loc[0])[0][0]
    ind_lon = np.where(lon == site_loc[1])[0][0]
    
    xx = data[:,ind_lat,ind_lon] / 100 #pa to hPa/mbar

    # convert time to serial date
    base_date = datetime.datetime.fromordinal(1) #time is in hours since 1-1-1
    time_delta = datetime.timedelta(hours = 1)
                                                                      # there is a -2 correction factor in the following
                                                                      # conversion to calculate the date (unknown why its needed)
    time = [base_date + (int(t - 48) * time_delta) for t in time]       #convert to integer for datetime calculation
    time = [t.toordinal() for t in time ]

    variance = np.var(xx)
    #normalize
    print 'Variance = %s ' % (variance)
    x = (xx - np.mean(xx)) / np.sqrt(variance)
    variance = np.var(x)

    return (xx, x,dt,np.array(time), variance, time_base) 
def mooring_1dvar(file_in):
    """ TODO: make file choice and var choice more transparent"""

    #dir_path = os.path.dirname(os.path.abspath(__file__))    
    ncfile = file_in
    
    ###nc readin/out
    nchandle = ncutil.ncopen(ncfile)
    params = constants.nc_vars_moor()
    ncdata = ncutil.ncreadfile(nchandle, params)
    ncutil.ncclose(nchandle)

    ###data massaging
    #time_all = ncdata[:,0] + ncdata[:,1]
    xx = ncutil.nc_missing(ncdata[:,9], flag=1e35, setfill='Zero')
    pytime = util.EPICdate2udunits(ncdata[:,0], ncdata[:,1])
    

    dt = 1. / pytime['interval_min'] #data is 4 times daily
    time_base = 'days'
    time = pytime['timeint']
    #time = util.subsample(time, int(pytime.get('interval_min')) / 4)

    variance = np.var(xx)
    #normalize
    print 'Variance = %s ' % (variance)
    x = (xx - np.mean(xx)) / np.sqrt(variance)
    variance = np.var(x)

    return (xx, x,dt,np.array(time), variance, time_base)  
def reanaly_sfc_press(file_in):

    ncfile = file_in

    ###nc readin/out
    nchandle = Dataset(ncfile, 'r')
    params = ['time', 'lat', 'lon', 'pres']
    time = nchandle.variables[params[0]][:]
    lat = nchandle.variables[params[1]][:]
    lon = nchandle.variables[params[2]][:]
    data = nchandle.variables[params[3]][:, :]
    ncutil.ncclose(nchandle)

    site_loc = [52.5, 190.0]  #52.8, -169.3 for M6 Samalga mooring
    ind_lat = np.where(lat == site_loc[0])[0][0]
    ind_lon = np.where(lon == site_loc[1])[0][0]

    xx = data[:, ind_lat, ind_lon] / 100  #pa to hPa/mbar

    # convert time to serial date
    base_date = datetime.datetime.fromordinal(1)  #time is in hours since 1-1-1
    time_delta = datetime.timedelta(hours=1)
    # there is a -2 correction factor in the following
    # conversion to calculate the date (unknown why its needed)
    time = [base_date + (int(t - 48) * time_delta)
            for t in time]  #convert to integer for datetime calculation
    time = [t.toordinal() for t in time]

    variance = np.var(xx)
    #normalize
    print 'Variance = %s ' % (variance)
    x = (xx - np.mean(xx)) / np.sqrt(variance)
    variance = np.var(x)

    return (xx, x, dt, np.array(time), variance, time_base)
def mooring_1dvar(file_in):
    """ TODO: make file choice and var choice more transparent"""

    #dir_path = os.path.dirname(os.path.abspath(__file__))
    ncfile = file_in

    ###nc readin/out
    nchandle = ncutil.ncopen(ncfile)
    params = constants.nc_vars_moor()
    ncdata = ncutil.ncreadfile(nchandle, params)
    ncutil.ncclose(nchandle)

    ###data massaging
    #time_all = ncdata[:,0] + ncdata[:,1]
    xx = ncutil.nc_missing(ncdata[:, 9], flag=1e35, setfill='Zero')
    pytime = util.EPICdate2udunits(ncdata[:, 0], ncdata[:, 1])

    dt = 1. / pytime['interval_min']  #data is 4 times daily
    time_base = 'days'
    time = pytime['timeint']
    #time = util.subsample(time, int(pytime.get('interval_min')) / 4)

    variance = np.var(xx)
    #normalize
    print 'Variance = %s ' % (variance)
    x = (xx - np.mean(xx)) / np.sqrt(variance)
    variance = np.var(x)

    return (xx, x, dt, np.array(time), variance, time_base)
Ejemplo n.º 7
0
def from_netcdf(infile, parameter):
    """ Uses ncreadfile_dic which returns a dictionary of all data from netcdf"""
    ncfile = infile

    ###nc readin/out
    nchandle = ncutil.ncopen(ncfile)
    params = ncutil.get_vars(nchandle) #gets all of them
    if not parameter in params:
        ### specified parameter doesn't exist
        return ('no param')
    ncdata = ncutil.ncreadfile_dic(nchandle, params)
    ncutil.ncclose(nchandle)

    ###data massaging
    pytime = util.EPICdate2udunits(ncdata['time'], ncdata['time2'])
    

    dt = 1. / pytime['interval_min'] #data is 4 times daily
    time_base = 'days'
    time = pytime['timeint']
    #time = util.subsample(time, int(pytime.get('interval_min')) / 4)

    
    # signal
    data = ncdata[parameter][:,0,0,0]
    variance = np.var(data)
    
    #normalize
    print 'Variance = %s ' % (variance)
    x = (data - np.mean(data)) / np.sqrt(variance)
    variance = np.var(x)

    return_data = {'data': data, 'anom': x, 'dt': dt, 'time':np.array(time), 'variance':variance, 'time_base':time_base}
    return (return_data)
def from_2netcdf(infile, parameter):
    """ For moorings with a, and b deployments
    Ingest and concatenate both files
    """
    ncfile = infile[0]

    ###nc readin/out
    nchandle = ncutil.ncopen(ncfile)
    params = ncutil.get_vars(nchandle) #gets all of them
    if not parameter in params:
        ### specified parameter doesn't exist
        return ('no param')
    ncdata1 = ncutil.ncreadfile_dic(nchandle, params)
    ncutil.ncclose(nchandle)

    ncfile = infile[1]

    ###nc readin/out
    nchandle = ncutil.ncopen(ncfile)
    params = ncutil.get_vars(nchandle) #gets all of them
    if not parameter in params:
        ### specified parameter doesn't exist
        return ('no param')
    ncdata2 = ncutil.ncreadfile_dic(nchandle, params)
    ncutil.ncclose(nchandle)


    ###data massaging
    pytime1 = util.EPICdate2udunits(ncdata1['time'], ncdata1['time2'])
    pytime2 = util.EPICdate2udunits(ncdata2['time'], ncdata2['time2'])
    

    dt = 1. / pytime1['interval_min'] #data is 4 times daily
    time_base = 'days'
    ### fill time gap
    blanktime = np.array([])
    for tg in np.arange(np.max(pytime1['timeint'])+dt,np.min(pytime2['timeint']),dt):
        blanktime = np.hstack((blanktime,tg))

    time = np.hstack((pytime1['timeint'], blanktime))
    time = np.hstack((time,pytime2['timeint']))
    
    
    # signal
    data_interp = np.interp(blanktime,[np.max(pytime1['timeint']),np.min(pytime2['timeint'])],[ncdata1[parameter][-1,0,0,0], ncdata2[parameter][0,0,0,0]])

    data = np.hstack((ncdata1[parameter][:,0,0,0], data_interp))
    data = np.hstack((data, ncdata2[parameter][:,0,0,0]))

    variance = np.var(data)
    
    #normalize
    print 'Variance = %s ' % (variance)
    x = (data - np.mean(data)) / np.sqrt(variance)
    variance = np.var(x)

    return_data = {'data': data, 'anom': x, 'dt': dt, 'time':np.array(time), 'variance':variance, 'time_base':time_base}
    return (return_data)
Ejemplo n.º 9
0
def reanaly_sfc_press_multifile(files_in):

    time = []
    xx = []
    for ncfile in files_in:

        ###nc readin/out
        nchandle = Dataset(ncfile, "r")
        params = ["time", "lat", "lon", "pres"]
        time = np.hstack((time, nchandle.variables[params[0]][:]))
        lat = nchandle.variables[params[1]][:]
        lon = nchandle.variables[params[2]][:]
        data = nchandle.variables[params[3]][:, :]
        ncutil.ncclose(nchandle)

        site_loc = [52.5, 190.0]  # 52.8, -169.3 for M6 Samalga mooring
        ind_lat = np.where(lat == site_loc[0])[0][0]
        ind_lon = np.where(lon == site_loc[1])[0][0]

        xx = np.hstack((xx, data[:, ind_lat, ind_lon] / 100))  # pa to hPa/mbar
    dt = 1.0  # data is daily
    time_base = "days"

    # convert time to serial date
    base_date = datetime.datetime.fromordinal(1)  # time is in hours since 1-1-1
    time_delta = datetime.timedelta(hours=1)
    # there is a -2 correction factor in the following
    # conversion to calculate the date (unknown why its needed)
    time = [base_date + (int(t - 48) * time_delta) for t in time]  # convert to integer for datetime calculation

    time = [t.toordinal() for t in time]

    variance = np.var(xx)
    # normalize
    print "Variance = %s " % (variance)
    x = (xx - np.mean(xx)) / np.sqrt(variance)
    variance = np.var(x)

    return (xx, x, dt, np.array(time), variance, time_base)
Ejemplo n.º 10
0
def from_2netcdf(infile, parameter):
    """ For moorings with a, and b deployments
    Ingest and concatenate both files
    """
    ncfile = infile[0]

    ###nc readin/out
    nchandle = ncutil.ncopen(ncfile)
    params = ncutil.get_vars(nchandle)  #gets all of them
    if not parameter in params:
        ### specified parameter doesn't exist
        return ('no param')
    ncdata1 = ncutil.ncreadfile_dic(nchandle, params)
    ncutil.ncclose(nchandle)

    ncfile = infile[1]

    ###nc readin/out
    nchandle = ncutil.ncopen(ncfile)
    params = ncutil.get_vars(nchandle)  #gets all of them
    if not parameter in params:
        ### specified parameter doesn't exist
        return ('no param')
    ncdata2 = ncutil.ncreadfile_dic(nchandle, params)
    ncutil.ncclose(nchandle)

    ###data massaging
    pytime1 = util.EPICdate2udunits(ncdata1['time'], ncdata1['time2'])
    pytime2 = util.EPICdate2udunits(ncdata2['time'], ncdata2['time2'])

    dt = 1. / pytime1['interval_min']  #data is 4 times daily
    time_base = 'days'
    ### fill time gap
    blanktime = np.array([])
    for tg in np.arange(
            np.max(pytime1['timeint']) + dt, np.min(pytime2['timeint']), dt):
        blanktime = np.hstack((blanktime, tg))

    time = np.hstack((pytime1['timeint'], blanktime))
    time = np.hstack((time, pytime2['timeint']))

    # signal
    data_interp = np.interp(
        blanktime, [np.max(pytime1['timeint']),
                    np.min(pytime2['timeint'])],
        [ncdata1[parameter][-1, 0, 0, 0], ncdata2[parameter][0, 0, 0, 0]])

    data = np.hstack((ncdata1[parameter][:, 0, 0, 0], data_interp))
    data = np.hstack((data, ncdata2[parameter][:, 0, 0, 0]))

    variance = np.var(data)

    #normalize
    print 'Variance = %s ' % (variance)
    x = (data - np.mean(data)) / np.sqrt(variance)
    variance = np.var(x)

    return_data = {
        'data': data,
        'anom': x,
        'dt': dt,
        'time': np.array(time),
        'variance': variance,
        'time_base': time_base
    }
    return (return_data)