Ejemplo n.º 1
0
def test12():
    tel = SKA1_low()
    tel.dec_deg = tel.lat_deg
    tel.obs_length_h = 0
    tel.num_times = 1
    tel.grid_cell_size_m = tel.station_diameter_m / 2

    def taper_r_profile(r, amps):
        n = amps.shape[0]
        i = np.round(r * (n - 1)).astype(np.int)
        return amps[i]

    from scipy import interpolate
    n = 100
    x = np.linspace(0, 1, n)
    y = taylor_win(n, -28)
    f = interpolate.interp1d(x, y, kind='cubic')

    # tel.plot_min_sep(500, f)
    tel.num_trials = 3
    tel.trail_timeout_s = 20
    tel.add_tapered_core(150, 500, f)
    try_id = tel.layouts['tapered_core']['info']['attempt_id']
    info = tel.layouts['tapered_core']['info'][try_id]
    print(try_id, info.keys(), info['max_tries'], info['total_tries'],
          info['time_taken'], info['total_tries']/info['time_taken'])
Ejemplo n.º 2
0
def test1():
    tel = SKA1_low()
    tel.dec_deg = tel.lat_deg
    tel.obs_length_h = 0
    tel.num_times = 1
    tel.grid_cell_size_m = tel.station_diameter_m / 2

    def taper_r_profile(r, num_amps, amps):
        """0.0 <= r < 1.0"""
        i = int(r * num_amps)
        return amps[i]

    # from scipy import interpolate
    n = 5000
    y = taylor_win(n, -28)
    # x = np.linspace(0, 1, n)
    # f = interpolate.interp1d(x, y, kind='cubic')
    opts = dict(num_amps=n, amps=y)
    tel.num_trials = 1
    tel.trail_timeout_s = 2


    tel.add_ska1_v5(r_max=5000)
    # tel.uv_sensitivity(100, 100, 5000, log_bins=True, )
    tel.plot_grid(show=True)
    # tel.eval_psf_rms_r(100)
    # tel.uv_hist(100, b_max=1000, plot=True, log_bins=True, bar=True)
    # tel.uv_sensitivity(100)
    # tel.eval_psf_rms_r(100)
    tel.eval_psf(plot1d=True)
Ejemplo n.º 3
0
    def plot_core_profile():
        def get_taper_profile(taper_func, r, **kwargs):
            if kwargs is not None:
                t = taper_func(r, **kwargs)
            else:
                t = taper_func(r)
            return t

        sll = -28
        n_taylor = 10000
        r = np.linspace(0, 1, 100)
        t1 = get_taper_profile(AnalyseUnwrapV5._taper_r_profile,
                               r,
                               amps=taylor_win(n_taylor, sll),
                               taper_r_min=0.0)

        import matplotlib.pyplot as plt
        fig, ax = plt.subplots(figsize=(8, 5))
        ax.plot(r, 35 / t1, 'k-', label='v7 core taper profile')
        ax.set_xlabel('Fractional radius')
        ax.set_ylabel('Minimum station separation (m)')
        ax.grid()
        ax.set_ylim(34)
        # ax.legend(loc='best')
        fig.savefig('station_min_dist.png')
        plt.close(fig)
Ejemplo n.º 4
0
 def _add_core_01(tel, num_stations=224, core_radius_m=510, sll=-28):
     n_taylor = 10000
     tel.num_trials = 4
     tel.trial_timeout_s = 45.0
     tel.seed = 40011245
     args = dict(amps=taylor_win(n_taylor, sll), taper_r_min=0.0)
     tel.add_tapered_core(num_stations, core_radius_m,
                          AnalyseUnwrapV5._taper_r_profile, **args)
     # print('seed =', tel.seed)
     return tel
Ejemplo n.º 5
0
def test9():
    def taper_func_1(r):
        return 1 - (r / 2)**1.5

    def taper_func_2(r, hwhm=1.5):
        c = hwhm / (2 * log(2))**0.5
        return np.exp(-r**2 / (2 * c**2))

    def taper_r_profile(r, amps):
        n = amps.shape[0]
        # Find the index nearest to r
        # FIXME(BM) check this is right...
        i = np.round(r * (n - 1)).astype(np.int)
        return amps[i]

    def get_taper_profile(taper_func, r, **kwargs):
        if kwargs is not None:
            t = taper_func(r, **kwargs)
        else:
            t = taper_func(r)
        return t

    r = np.linspace(0, 1, 100)
    # r = np.random.rand(100)
    t1 = get_taper_profile(taper_func_1, r)
    t2 = get_taper_profile(taper_func_2, r, hwhm=0.7)
    t3 = get_taper_profile(taper_r_profile, r, amps=taylor_win(1000, -22))

    fig, ax = plt.subplots()
    ax.plot(r, t1, 'b.', label='t1')
    ax.plot(r, t2, 'r.', label='gauss')
    ax.plot(r, t3, 'g.', label='r profile (taylor)')

    ax.plot(ax.get_xlim(), [0.5, 0.5], 'r--')
    ax.plot([0.7, 0.7], ax.get_ylim(), 'r--')
    ax.grid()
    ax.legend()
    plt.show()

    return
    # r_max = 500
    # n = 11
    # sll = -28
    # nbar = int(np.ceil(2.0 * (np.arccosh(10**(-sll / 20.0)) / np.pi)**2 + 0.5))

    # # r = np.arange(w.shape[0]) * ((r_max * 2) / (n + 1))
    # r = np.linspace(0, 1, n)
    # print(r.shape, w.shape)

    fig, ax = plt.subplots()
    ax.plot(r, w, '.-')
    ax.grid()
    plt.show()
Ejemplo n.º 6
0
def test10():
    n = 5
    x = np.linspace(0, 1, n)
    y = taylor_win(n, -28)

    from scipy import interpolate
    f = interpolate.interp1d(x, y, kind='cubic')
    x_new = np.random.rand(10000)
    x_new.sort()
    fig, ax = plt.subplots()
    ax.plot(x, y, '+-')
    ax.plot(x_new, f(x_new), '-')
    plt.show()
Ejemplo n.º 7
0
    def model08(self, name='model08', add_core=True):
        """Proposed SKA v6 configuration option 1

        4 rings of 21 stations (84 total)
            r0 = 500m, r5 = 1700m with no ring at r0
        72 station arms from r0 = 1700m with no point at 1700 to r21 at 6.4 km
         (ie 6 stations symmmetric about 6.4km)
           Note(BM) might have to shrink this a bit to match 1km LV reticulation
        core of 224 + 6 stations (uniform or tapered up to 500m)
        """
        metrics = Metrics(self.out_dir)

        # TODO(BM) hybrid of model1 with a custom generated core
        # and avoiding cable lengths > 1km in arm clusters.
        # For the log spiral arms also generate from a single arm and rotate
        # with stride 3 to generate arms.  (put 162 - 18? in arms) and
        # (224 + 18 in the core) to recover some short baselines.
        from math import log, exp
        import matplotlib.pyplot as plt

        tel = SKA1_low_analysis(name + '_r08')
        tel.station_diameter_m = 35
        tel.obs_length_h = self.obs_length_h
        tel.num_times = self.num_times
        tel.dec_deg = tel.lat_deg

        # Core
        core_radius_m = 480
        sll = -24
        n_taylor = 10000
        tel.num_trials = 2
        tel.trial_timeout_s = 30.0

        # Inner rings
        num_rings = 5
        num_per_ring = 17
        ring_r0 = 580
        ring_r5 = 1700
        ring_radii = np.logspace(np.log10(ring_r0), np.log10(ring_r5),
                                 num_rings)
        print('ring radii   =', ring_radii)
        print('ring spacing = ', np.diff(ring_radii))

        # Arms
        # arm_r0 = 1805
        arm_r0 = ring_r5 + core_radius_m / 2
        # arm_r1 = 7135
        arm_r1 = 6400

        # ============== Core
        tel.seed = 74383209

        args = dict(amps=taylor_win(n_taylor, sll), taper_r_min=0.30)
        # 510m worked ok
        tel.add_tapered_core(224 + 2, 480, AnalyseUnwrapV5.__taper_r_profile,
                             **args)
        print('final seed =',
              tel.layouts['tapered_core']['info']['final_seed'])
        # tel.add_ska1_v5(r_max=500)

        # ============== Rings
        # TODO(BM) rotate every other ring so radii don't align
        np.random.seed(1)
        for i, r in enumerate(ring_radii[0:2]):
            print('xxx', i, r)
            # tel.add_ring(num_per_ring, r,
            #              delta_theta=(360/(num_per_ring * 2)) * (i%2))
            tel.add_ring(num_per_ring,
                         r,
                         delta_theta=np.random.randint(low=0, high=360))
            # tel.add_ring(num_per_ring, r, delta_theta=0)

        # tel.layouts['test_st'] = dict(x=np.array([2e3]), y=np.array([0e3]))
        tel.grid_cell_size_m = tel.station_diameter_m
        metrics.analyse_telescope(tel, 0, self.eval_metrics)
        return tel

        # ============= Spiral arms
        # tel.add_log_spiral_2(25, arm_r0, arm_r1, 0.515, 3, 'inner_arms', 0)
        tel.add_log_spiral_3(25, self.start_inner, arm_r0, arm_r1, 0.515,
                             self.num_arms, self.theta0_deg)

        # tel.add_symmetric_log_spiral(25, arm_r0, arm_r1, 0.515, 3,
        #                              'inner_arms', self.delta_theta_deg_inner)

        x, _, _ = tel.get_coords_enu()
        print('total stations =', x.size)

        # Plotting layout
        metrics.analyse_telescope(tel, 0, self.eval_metrics)

        metrics.save_results(name)
        # metrics.plot_cable_length_compare()
        metrics.plot_comparisons()
        return tel
Ejemplo n.º 8
0
    def model06(self, name='model06', add_core=True, r_values=None):
        """Model06 == no cables > 1km, an improved core"""
        # Initialise metrics class
        metrics = Metrics(self.out_dir)

        # TODO(BM) hybrid of model1 with a custom generated core
        # and avoiding cable lengths > 1km in arm clusters.
        # For the log spiral arms also generate from a single arm and rotate
        # with stride 3 to generate arms.  (put 162 - 18? in arms) and
        # (224 + 18 in the core) to recover some short baselines.
        from math import log, exp
        import matplotlib.pyplot as plt

        def taper_func_1(r):
            return 1 - (r / 2)**1.5

        def taper_func_2(r, hwhm=1.5, taper_r_min=0):
            r = np.asarray(r)
            c = hwhm / (2 * log(2))**0.5
            values = np.exp(-((r - taper_r_min) / (1 - taper_r_min))**2 / 2 *
                            c**2)
            values[r < taper_r_min] = 1.0
            return values

        def taper_r_profile(r, amps, taper_r_min=0):
            """Nearest neighbour matching. FIXME(BM) double check this"""
            r = np.asarray(r)
            idx = np.round(
                ((r - taper_r_min) / (1 - taper_r_min)) * (amps.size - 1))
            values = np.asarray(amps[idx.astype(np.int)])
            values[r < taper_r_min] = 1.0
            return values

        def get_taper_profile(taper_func, r, **kwargs):
            if kwargs is not None:
                t = taper_func(r, **kwargs)
            else:
                t = taper_func(r)
            return t

        tel = SKA1_low_analysis(name)
        sll = -28
        n_taylor = 10000
        r = np.linspace(0, 1, 100)
        t1 = get_taper_profile(taper_func_1, r)
        t2 = get_taper_profile(taper_func_2, r, hwhm=1.0)
        t2a = get_taper_profile(taper_func_2, r, hwhm=1.0, taper_r_min=0.25)
        t3 = get_taper_profile(taper_r_profile,
                               r,
                               amps=taylor_win(n_taylor, sll))
        t4 = get_taper_profile(taper_r_profile,
                               r,
                               amps=taylor_win(n_taylor, sll),
                               taper_r_min=0.25)

        fig, ax = plt.subplots()
        ax.plot(r, tel.station_diameter_m / t1, 'k-', label='Power law')
        ax.plot(r, tel.station_diameter_m / t2, 'b-', label='Gaussian')
        ax.plot(r, tel.station_diameter_m / t2a, 'b--', label='Gaussian rmin')
        ax.plot(r, tel.station_diameter_m / t3, 'r-', label='Taylor %i' % sll)
        ax.plot(r,
                tel.station_diameter_m / t4,
                'r--',
                label='Taylor rmin %i' % sll)
        ax.set_xlabel('Fractional radius')
        ax.set_ylabel('Minimum station separation (m)')
        ax.grid()
        ax.set_ylim(34)
        ax.legend(loc='best')
        fig.savefig('station_min_dist.png')
        # plt.show()
        plt.close(fig)

        core_radius_m = 480

        tel.num_trials = 10
        tel.trial_timeout_s = 30.0
        tel.seed = 24183655
        args = dict(amps=taylor_win(n_taylor, sll), taper_r_min=0.25)
        tel.add_tapered_core(224 + 18, core_radius_m, taper_r_profile, **args)
        tel.plot_layout(filename=name + '.png',
                        show_decorations=False,
                        plot_radii=[500])
        print('final seed =',
              tel.layouts['tapered_core']['info']['final_seed'])
        print(tel.seed)

        tel.add_log_spiral_2(20, 480, 6000, 0.515, 3, 'inner_arms', 0)
        x1, y1, _ = tel.get_coords_enu()

        tel_v5 = SKA1_low_analysis('ska1_v5')
        tel_v5.add_ska1_v5(r_max=6400)
        x2, y2, _ = tel_v5.get_coords_enu()

        # Side by side comparison to ska v5 core
        fig, axes = plt.subplots(figsize=(16, 8), ncols=2)
        for xy in zip(x1, y1):
            axes[0].add_artist(
                plt.Circle(xy,
                           tel.station_diameter_m / 2,
                           fill=True,
                           color='k',
                           alpha=0.5))
        for xy in zip(x2, y2):
            axes[1].add_artist(
                plt.Circle(xy,
                           tel.station_diameter_m / 2,
                           fill=True,
                           color='k',
                           alpha=0.5))
        for ax in axes:
            ax.add_artist(plt.Circle((0, 0), 500, fill=False, color='r'))
            ax.set_aspect('equal')
            ax.set_xlim(-600, 600)
            ax.set_ylim(-600, 600)
        plt.show()
        plt.close(fig)

        # Side by side comparison to ska v5 core
        fig, axes = plt.subplots(figsize=(16, 8), ncols=2)
        for xy in zip(x1, y1):
            axes[0].add_artist(
                plt.Circle(xy,
                           tel.station_diameter_m / 2,
                           fill=True,
                           color='k',
                           alpha=0.5))
        for xy in zip(x2, y2):
            axes[1].add_artist(
                plt.Circle(xy,
                           tel.station_diameter_m / 2,
                           fill=True,
                           color='k',
                           alpha=0.5))
        for ax in axes:
            ax.add_artist(plt.Circle((0, 0), 500, fill=False, color='r'))
            ax.set_aspect('equal')
            ax.set_xlim(-7e3, 7e3)
            ax.set_ylim(-7e3, 7e3)
        plt.show()
        plt.close(fig)

        # TODO(BM) add cluster centres into the spiral arms...

        tel.plot_layout(show_decorations=True,
                        xy_lim=2.5e3,
                        plot_radii=[500, 6400])
        tel.plot_layout(show_decorations=True,
                        xy_lim=7e3,
                        plot_radii=[500, 6400])