Ejemplo n.º 1
0
def test():
    # simulated image
    mat_contents = sio.loadmat('data/sim_3dmri.mat')
    x0 = mat_contents["sim_3dmri"]
    x = x0[:, :, 40:60]
    nx, ny, nz = x.shape
    mask = ut.mask3d(nx, ny, nz, [15, 15, 0])

    FTm = opts.FFTnd_kmask(mask)
    #ut.plotim3(np.absolute(mask[:,:,1:10]))#plot the mask

    # undersampling in k-space
    b = FTm.forward(x)
    ut.plotim3(np.absolute(FTm.backward(b)))  #undersampled imag

    scale = scaling(FTm, b)

    #b = b/scale

    #do cs mri recon
    Nite = 2  #number of iterations
    step = 0.5  #step size
    #th   = 1 #threshold
    #xopt = solvers.IST_2(FTm.forward,FTm.backward,b, Nite, step,1) #soft thresholding
    xopt = solvers.ADMM_l2Afxnb_tvx(FTm.forward, FTm.backward, b, Nite, step,
                                    10, 1)
    #xopt = solvers.ADMM_l2Afxnb_l1x_2( FTm.forward, FTm.backward, b, Nite, step, 100, 1 )

    ut.plotim3(np.absolute(xopt))
Ejemplo n.º 2
0
def test():
    # simulated image
    mat_contents = sio.loadmat('data/kellman_data/PKdata3.mat',
                               struct_as_record=False,
                               squeeze_me=True)
    xdata = mat_contents["data"]
    im = xdata.images
    field = xdata.FieldStrength
    b0_gain = 100.0
    TE = b0_gain * xdata.TE
    fat_freq_arr = (1.0 / b0_gain) * 42.58 * field * np.array(
        [-3.80, -3.40, -2.60, -1.94, -0.39, 0.60])
    fat_rel_amp = np.array([0.087, 0.693, 0.128, 0.004, 0.039, 0.048])

    #ut.plotim3(np.real(im[:,:,:]))
    nx, ny, nte = im.shape
    #undersampling
    mask = ut.mask3d(nx, ny, nte, [15, 15, 0], 0.8)
    #FTm   = opts.FFT2d_kmask(mask)
    FTm = opts.FFTW2d_kmask(mask)
    #FTm   = opts.FFT2d()
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm, b)
    b = b / scaling

    #ut.plotim3(mask)
    #ut.plotim3(np.absolute(FTm.backward(b))) #undersampled imag
    #parameters
    xpar = np.zeros((nx, ny, 3), np.complex128)
    #xpar[:,:,0]  = 10*np.ones((nx,ny))
    #ut.plotim3(np.absolute(xpar),[3,-1])
    # IDEAL and FFT jointly
    IDEAL = idealc.IDEAL_opt2(TE, fat_freq_arr,
                              fat_rel_amp)  #fat_freq_arr , fat_rel_amp
    Aideal_ftm = opts.joint2operators(IDEAL, FTm)  #(FTm,IDEAL)#
    IDEAL.set_x(xpar)  #this set the size of data
    dwt = opts.DWT2d(wavelet='haar', level=4)

    #do tv cs mri recon
    Nite = 10  #number of iterations
    step = 1  #step size
    l1_r = 0.001
    tv_r = 0.0001  # regularization term for tv term
    rho = 1.0

    xpar = ADMM_l2Agaussnewton_l1Tfx(IDEAL, FTm, dwt, b, Nite, step, l1_r, rho)
    #xpar = ADMM_l2Aguassnewton_tvx(IDEAL, FTm, b, Nite, step, tv_r, rho )
    #xpar = ADMM_l2Agaussnewton_l1Tfx_tvx( IDEAL, FTm, dwt, b, Nite, step, l1_r, tv_r, rho)

    ut.plotim3(np.absolute(xpar)[..., 0:2], bar=1)
    ut.plotim3(b0_gain * np.real(xpar)[..., 2], bar=1)
    ut.plotim3(b0_gain * 2.0 * np.pi * np.imag(xpar)[..., 2], bar=1)
Ejemplo n.º 3
0
def test():
    # read rf and tr arrays from mat file
    mat_contents = sio.loadmat(pathdat +
                               'mrf_t1t2b0pd_mrf_randphasecyc_traintest.mat')
    far = np.array(mat_contents["rf"].astype(np.complex128).squeeze())
    trr = np.array(mat_contents["trr"].astype(np.float64).squeeze())
    # input MRF time courses
    mat_contents2 = sio.loadmat(pathdat + 'datax1.mat')
    data_x = np.array(mat_contents2["datax1"]).astype(np.float64)
    # prepare for sequence simulation, y->x_hat
    Nk = far.shape[0]
    Nexample = data_x.shape[0]
    ti = 10  #ms
    M0 = np.array([0.0, 0.0, 1.0]).astype(np.float64)
    #image size
    nx = 217
    ny = 181
    # mask in ksp
    mask = ut.mask3d(nx, ny, Nk, [15, 15, 0], 0.4)
    #FTm           = opts.FFT2d_kmask(mask)
    FTm = cuopts.FFT2d_cuda_kmask(mask)

    #intial timing
    timing = utc.timing()
    # x real and imag parts should be combined
    data_x_c = np.zeros((Nexample, Nk), np.complex128)
    data_x_c = ssmrf.seqdata_realimag_2complex(data_x)
    #could do mask M here, data_x_c = M*data_x_c
    data_x_c = mask_ksp3d(nx, ny, Nk, FTm, data_x_c)
    #data_x0_c     = data_x_c
    data_x = ssmrf.seqdata_complex_2realimag(data_x_c)
    data_x0 = data_x
    # intial tmp data
    test_outy0 = np.zeros((Nexample, 4), dtype=np.float64)
    test_outy = np.zeros((Nexample, 4), dtype=np.float64)
    tmptest_outy = np.zeros((Nexample, 4), dtype=np.float64)
    acctest_outy = np.zeros((Nexample, 4), dtype=np.float64)
    # f'(y), cnn model
    timing.start()
    ssmrf.batch_apply_tf_cuda(Nexample, ny, sess.run, x, data_x, y_conv,
                              test_outy0, keep_prob)
    timing.stop().display('CNN model first estimation ')
    test_outy0 = constraints(test_outy0)
    acctest_outy = test_outy0
    # for loop start here
    for _ in range(40):
        #cuda simulate bloch for each pixel
        T1r, T2r, dfr, PDr = ssmrf.set_par((test_outy))
        timing.start()
        data_x_c = ssmrf.bloch_sim_batch_cuda(Nexample, 7 * ny, Nk, PDr, T1r,
                                              T2r, dfr, M0, trr, far, ti)
        timing.stop().display('Bloch sim in loop ')
        #0.5* d||M*f(p)-b||_2^2/dp = f'*(M*f(p)-b) = f'(M*f(p)) - f'(b)
        # could do mask, M, here, e.g. data_x_c=M*data_x_c
        data_x_c = mask_ksp3d(nx, ny, Nk, FTm, data_x_c)
        #seperate real/imag parts or abs/angle parts
        data_x = ssmrf.seqdata_complex_2realimag(data_x_c)
        # apply CNN model, f'(i)
        ssmrf.batch_apply_tf_cuda(Nexample, ny, sess.run, x, data_x, y_conv,
                                  tmptest_outy, keep_prob)
        tmptest_outy = constraints(tmptest_outy)
        # gradient = f'(M * f(p)) - f'(b)
        tmptest_outy = tmptest_outy - test_outy0  #+ 0.2*test_outy
        # gradient descent for test_outy
        acctest_outy = acctest_outy - tmptest_outy
        print('gradient 0.5* d||f(p)-b||_2^2/dp: %g' %
              np.linalg.norm(tmptest_outy))
        #print('test_outy: %g' % np.linalg.norm(test_outy))
        acctest_outy = constraints(acctest_outy)
        #could do soft thresholding on test_outy here, i.e. test_outy = threshold(test_outy)
        #test_outy     = l0_par(nx, ny, acctest_outy) #
        test_outy = tv_par(nx, ny, acctest_outy)

        sio.savemat(pathdat + 'cnn_cs_testouty.mat', {'test_outy': test_outy})
Ejemplo n.º 4
0
def test():
    # simulated image
    mat_contents = sio.loadmat(pathdat, struct_as_record=False, squeeze_me=True)
    xdata        = mat_contents["data"] 
    im           = xdata.images
    field        = xdata.FieldStrength
    b0_gain      = 100.0
    TE           = b0_gain * xdata.TE
    fat_freq_arr = (1.0/b0_gain) * 42.58 * field * np.array([-3.80, -3.40, -2.60, -1.94, -0.39, 0.60])
    fat_rel_amp  = np.array([0.087, 0.693, 0.128, 0.004, 0.039, 0.048])
 
    ut.plotim3(np.real(im[:,:,:]))
    nx,ny,nte  = im.shape
    #undersampling
    mask       = ut.mask3d( nx, ny, nte, [15,15,0], 0.8)
    #FTm   = opts.FFT2d_kmask(mask)
    #FTm        = opts.FFTW2d_kmask(mask)
    FTm   = opts.FFT2d()
    b          = FTm.forward(im)
    scaling    = ut.optscaling(FTm,b)
    b          = b/scaling

    #ut.plotim3(mask)
    ut.plotim3(np.absolute(FTm.backward(b))) #undersampled imag
    #parameters
    xpar        = np.zeros((nx,ny,3), np.complex128)
    #xpar[:,:,0]  = 10*np.ones((nx,ny))
    #ut.plotim3(np.absolute(xpar),[3,-1])
    # IDEAL and FFT jointly
    IDEAL       = idealc.IDEAL_opt2(TE, fat_freq_arr , fat_rel_amp )#fat_freq_arr , fat_rel_amp
    Aideal_ftm  = opts.joint2operators(IDEAL, FTm)#(FTm,IDEAL)#
    IDEAL.set_x(xpar) #should update in each gauss newton iteration
    residual    = IDEAL.residual(b, FTm)
    #ut.plotim3(np.absolute(FTm.backward(residual)))
    # wavelet and x+d_x
    addx_water  = idealc.x_add_dx()
    addx_fat    = idealc.x_add_dx()
    addx_df     = idealc.x_add_dx()
    #addx        = idealc.x_add_dx()
    #addx.set_w([1, 1, 0.0001])
    addx_water.set_x(xpar[...,0]) #should update in each gauss newton iteration
    addx_fat.set_x  (xpar[...,1])
    addx_df.set_x   (xpar[...,2])
    dwt         = opts.DWT2d(wavelet = 'haar', level=4)
    tvop        = tvopc.TV2d()
    Adwt_addx_w = opts.joint2operators(dwt, addx_water)   
    Adwt_addx_f = opts.joint2operators(dwt, addx_fat)
    Adwt_addx_d = opts.joint2operators(tvop, addx_df)   
    #Adwt_addx   = opts.joint2operators(dwt, addx)

    #CGD
    Nite  = 80
    l1_r1 = 0.01
    l1_r2 = 0.01
    def f(xi):
        #return np.linalg.norm(Aideal_ftm.forward(xi)-residual)
        return alg.obj_fidelity(Aideal_ftm, xi, residual) \
        + l1_r1 * alg.obj_sparsity(Adwt_addx_w, xi[...,0])\
        + l1_r1 * alg.obj_sparsity(Adwt_addx_f, xi[...,1])\
        + l1_r2 * alg.obj_sparsity(Adwt_addx_d, xi[...,2])

    def df(xi):
        #return 2*Aideal_ftm.backward(Aideal_ftm.forward(xi)-residual)
        gradall = alg.grad_fidelity(Aideal_ftm, xi, residual)
        gradall[...,0] += l1_r1 * alg.grad_sparsity(Adwt_addx_w, xi[...,0])
        gradall[...,1] += l1_r1 * alg.grad_sparsity(Adwt_addx_f, xi[...,1])
        gradall[...,2] += l1_r2 * alg.grad_sparsity(Adwt_addx_d, xi[...,2])  
        return gradall      

    #do soft thresholding
    #Nite = 20 #number of iterations
    #step = 0.1 #step size
    #th   = 1 # theshold level
    #do tv cs mri recon
    #Nite = 40 #number of iterations
    #step = 1 #step size
    #tv_r = 0.01 # regularization term for tv term
    #rho  = 1.0  
    ostep = 1.0#0.3       
    for i in range(20):
        #wavelet L1 IST
    #    dxpar = solvers.IST_3( Aideal_ftm.forward, Aideal_ftm.backward,\
    #                Adwt_addx.backward, Adwt_addx.forward, residual, Nite, step, th )
        #wavelet L1 ADMM
    #    dxpar = solvers.ADMM_l2Afxnb_l1Tfx( Aideal_ftm.forward, Aideal_ftm.backward, \
    #               Adwt_addx.backward, Adwt_addx.forward, residual, Nite, step, tv_r, rho,15 )
        # TV ADMM
    #    dxpar = solvers.ADMM_l2Afxnb_tvx( Aideal_ftm.forward, Aideal_ftm.backward, residual\
    #    	, Nite, step, tv_r, rho ) 
        # L2 CGD
    #    dxpar = pf.prox_l2_Afxnb_CGD2( Aideal_ftm.forward, Aideal_ftm.backward, residual, rho, Nite )
    #    dxpar = pf.prox_l2_Afxnb_CGD2( Aideal_ftm.forward, Aideal_ftm.backward, residual, Nite )
        # L1 CGD
        dxpar   = alg.conjugate_gradient(f, df, Aideal_ftm.backward(residual), Nite )
        ostep,j = alg.BacktrackingLineSearch(f, df, xpar, dxpar)
        if i%1 == 0:
            ut.plotim3(np.absolute(xpar + ostep*dxpar)[...,0:2],bar=1)
            ut.plotim3(np.real(xpar + ostep*dxpar)[...,2],bar=1)
            ut.plotim3(np.imag(xpar + ostep*dxpar)[...,2],bar=1)
        xpar = xpar + ostep*dxpar#.astype(np.float64)   

        #if i > 1: #unwrapping on frequence
        #    xpar[:,:,2] = np.real(unwrap_freq(np.real(xpar[:,:,2])))\
        #    +1j*(np.imag(xpar[:,:,2]))

        IDEAL.set_x(xpar) #should update in each gauss newton iteration
        residual = IDEAL.residual(b, FTm)
    #    addx.set_x(xpar) #should update in each gauss newton iteration
        addx_water.set_x(xpar[...,0]) #should update in each gauss newton iteration
        addx_fat.set_x  (xpar[...,1])
        addx_df.set_x   (xpar[...,2])
    ut.plotim3(np.absolute(xpar)[...,0:2],bar=1)
    ut.plotim3(np.real(xpar + ostep*dxpar)[...,2],bar=1)
    ut.plotim3(np.imag(xpar + ostep*dxpar)[...,2],bar=1)
    sio.savemat(pathdat + 'IDEAL_CGD_result.mat', {'xpar':xpar, 'residual':residual})
Ejemplo n.º 5
0
def test():
    # simulated image
    mat_contents = sio.loadmat('data/kellman_data/PKdata3.mat',
                               struct_as_record=False,
                               squeeze_me=True)
    xdata = mat_contents["data"]
    im = xdata.images
    field = xdata.FieldStrength
    b0_gain = 100.0
    TE = b0_gain * xdata.TE
    fat_freq_arr = (1.0 / b0_gain) * 42.58 * field * np.array(
        [-3.80, -3.40, -2.60, -1.94, -0.39, 0.60])
    fat_rel_amp = np.array([0.087, 0.693, 0.128, 0.004, 0.039, 0.048])

    ut.plotim3(np.real(im[:, :, :]))
    nx, ny, nte = im.shape
    #undersampling
    mask = ut.mask3d(nx, ny, nte, [15, 15, 0], 0.8)
    FTm = opts.FFT2d_kmask(mask)
    #FTm        = opts.FFTW2d_kmask(mask)
    #FTm   = opts.FFT2d()
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm, b)
    b = b / scaling

    #ut.plotim3(mask)
    ut.plotim3(np.absolute(FTm.backward(b)))  #undersampled imag
    #parameters
    xpar = np.zeros((nx, ny, 3), np.complex128)
    #xpar[:,:,0]  = 10*np.ones((nx,ny))
    #ut.plotim3(np.absolute(xpar),[3,-1])
    # IDEAL and FFT jointly
    IDEAL = idealc.IDEAL_opt2(TE, fat_freq_arr,
                              fat_rel_amp)  #fat_freq_arr , fat_rel_amp
    Aideal_ftm = opts.joint2operators(IDEAL, FTm)  #(FTm,IDEAL)#
    IDEAL.set_x(xpar)  #should update in each gauss newton iteration
    residual = IDEAL.residual(b, FTm)
    #ut.plotim3(np.absolute(FTm.backward(residual)))
    # wavelet and x+d_x
    addx = idealc.x_add_dx()
    addx.set_x(xpar)
    #addx.set_w([1, 1, 0.0001])
    dwt = opts.DWT2d(wavelet='haar', level=4)
    Adwt_addx = opts.joint2operators(dwt, addx)

    #do soft thresholding
    #Nite = 200 #number of iterations
    #step = 0.01 #step size
    #th   = 0.02 # theshold level
    #do tv cs mri recon
    Nite = 10  #number of iterations
    step = 1  #step size
    l1_r = 0.001
    tv_r = 0.0001  # regularization term for tv term
    rho = 1.0
    ostep = 0.3

    for i in range(20):
        #wavelet L1 IST
        #    dxpar = solvers.IST_3( Aideal_ftm.forward, Aideal_ftm.backward,\
        #                Adwt_addx.backward, Adwt_addx.forward, residual, Nite, step, th )
        #wavelet L1 ADMM
        #    dxpar = solvers.ADMM_l2Afxnb_l1Tfx( Aideal_ftm.forward, Aideal_ftm.backward, \
        #               Adwt_addx.backward, Adwt_addx.forward, residual, Nite, step, l1_r, rho, 200 )
        # TV ADMM
        #    dxpar = solvers.ADMM_l2Afxnb_tvx( Aideal_ftm.forward, Aideal_ftm.backward, residual\
        #    	, Nite, step, tv_r, rho, 15 )
        dxpar = solvers.ADMM_l2Afxnb_tvTfx( Aideal_ftm.forward, Aideal_ftm.backward, \
                   addx.backward, addx.forward, residual, Nite, step, l1_r, rho, 200 )

        # L2 CGD
        #    dxpar = pf.prox_l2_Afxnb_CGD2( Aideal_ftm.forward, Aideal_ftm.backward, residual, rho, Nite )
        #    dxpar = pf.prox_l2_Afxnb_CGD2( Aideal_ftm.forward, Aideal_ftm.backward, residual, Nite )

        if i % 1 == 0:
            ut.plotim3(np.absolute(xpar + ostep * dxpar)[..., 0:2], bar=1)
            ut.plotim3(b0_gain * np.real(xpar + ostep * dxpar)[..., 2], bar=1)
            ut.plotim3(np.imag(xpar + ostep * dxpar)[..., 2], bar=1)

        xpar = xpar + ostep * dxpar  #.astype(np.float64)

        IDEAL.set_x(xpar)  #should update in each gauss newton iteration
        residual = IDEAL.residual(b, FTm)
        addx.set_x(xpar)  #should update in each gauss newton iteration
        sio.savemat('data/kellman_data/xpar.mat', {'xpar': xpar})
    ut.plotim3(np.absolute(xpar)[..., 0:2], bar=1)
Ejemplo n.º 6
0
def test():
    ft = opts.FFTnd()
    mat_contents = sio.loadmat(
        '/working/larson/UTE_GRE_shuffling_recon/brain_mt_recon_20160919/brain_3dMRI_32ch.mat'
    )
    x = mat_contents["DATA"]
    #ut.plotim3(np.absolute(x[:,:,:,0]))
    im = ft.backward(x)
    #ut.plotim3(np.absolute(im[:,:,im.shape[2]//2,:]))
    #get shape
    nx, ny, nz, nc = x.shape
    #crop k-space
    xcrop = ut.crop3d(x, 12)
    if 1:  #do espirit
        Vim, sim = espirit_3d(xcrop, x.shape, 150, hkwin_shape = (12,12,12),\
         pad_before_espirit = 0, pad_fact = 2)
        #coil map
        #ut.plotim3(np.absolute(Vim[:,:,im.shape[2]//2,:]),bar = 1)
        #ut.plotim3(np.absolute(sim),bar = 1)
        #create espirit operator
        esp = opts.espirit(Vim)
        #esp.save('../save_data/espirit_data_3d.mat')
        esp.save(
            '/working/larson/UTE_GRE_shuffling_recon/python_test/save_data/espirit_data_3d.mat'
        )
    else:
        esp = opts.espirit()
        #esp.restore('../save_data/espirit_data_3d.mat')
        esp.restore(
            '/working/larson/UTE_GRE_shuffling_recon/python_test/save_data/espirit_data_3d.mat'
        )
    #create mask
    mask = ut.mask3d(nx, ny, nz, [15, 15, 0])
    #FTm  = opts.FFTnd_kmask(mask)
    FTm = opts.FFTWnd_kmask(mask, threads=5)
    #ut.plotim1(np.absolute(mask))#plot the mask
    Aopt = opts.joint2operators(esp, FTm)
    #create image
    im = FTm.backward(x)
    #ut.plotim3(np.absolute(im[:,:,:]))
    #wavelet operator
    dwt = opts.DWTnd(wavelet='haar', level=4)
    # undersampling in k-space
    b = FTm.forward(im)
    scaling = ut.optscaling(FTm, b)
    b = b / scaling
    #ut.plotim3(np.absolute(Aopt.backward(b))) #undersampled imag

    #do tv cs mri recon
    Nite = 20  #number of iterations
    step = 0.5  #step size
    tv_r = 0.002  # regularization term for tv term
    rho = 1.0
    #xopt = solvers.ADMM_l2Afxnb_tvx( Aopt.forward, Aopt.backward, b, Nite, step, tv_r, rho )
    xopt = solvers.ADMM_l2Afxnb_l1Tfx(Aopt.forward, Aopt.backward,
                                      dwt.backward, dwt.forward, b, Nite, step,
                                      tv_r, rho)

    #do wavelet l1 soft thresholding
    #Nite = 50 #number of iterations
    #step = 1 #step size
    #th = 0.4 # theshold level
    #xopt = solvers.FIST_3( Aopt.forward, Aopt.backward, dwt.backward, dwt.forward, b, Nite, step, th )

    ut.plotim3(np.absolute(xopt[:, :, :]))
Ejemplo n.º 7
0
def test():
    # read rf and tr arrays from mat file
    mat_contents = sio.loadmat(pathdat +
                               'mrf_t1t2b0pd_mrf_randphasecyc_traintest.mat')
    far = np.array(mat_contents["rf"].astype(np.complex128).squeeze())
    trr = np.array(mat_contents["trr"].astype(np.float64).squeeze())
    # input MRF time courses
    mat_contents2 = sio.loadmat(pathdat + 'datax1.mat')
    data_x = np.array(mat_contents2["datax1"]).astype(np.float64)
    # prepare for sequence simulation, y->x_hat
    Nk = far.shape[0]
    Nexample = data_x.shape[0]
    ti = 10  #ms
    M0 = np.array([0.0, 0.0, 1.0]).astype(np.float64)
    #image size
    nx = 217
    ny = 181
    # mask in ksp
    mask = ut.mask3d(nx, ny, Nk, [15, 15, 0], 0.4)
    #FTm           = opts.FFT2d_kmask(mask)
    FTm = cuopts.FFT2d_cuda_kmask(mask)

    #intial timing
    timing = utc.timing()
    # x real and imag parts should be combined
    data_x_c = np.zeros((Nexample, Nk), np.complex128)
    data_x_c = ssmrf.seqdata_realimag_2complex(data_x)
    #could do mask M here, data_x_c = M*data_x_c
    data_x_c = mask_ksp3d(nx, ny, Nk, FTm, data_x_c)
    data_x0_c = data_x_c
    data_x_c_pre = data_x_c
    data_x_acc = ssmrf.seqdata_complex_2realimag(data_x_c)
    # intial tmp data
    test_outy0 = np.zeros((Nexample, 4), dtype=np.float64)
    test_outy = np.zeros((Nexample, 4), dtype=np.float64)
    step = 1.0
    # for loop start here
    for _ in range(40):
        for _ in range(10):
            ssmrf.batch_apply_tf_cuda(Nexample, ny, sess.run, x, data_x_acc,
                                      y_conv, test_outy, keep_prob)
            #cuda bloch simulation for each pixel, parameters-->x
            T1r, T2r, dfr, PDr = ssmrf.set_par(test_outy)
            #timing.start()
            data_x_c = ssmrf.bloch_sim_batch_cuda(Nexample, 7 * ny, Nk, PDr,
                                                  T1r, T2r, dfr, M0, trr, far,
                                                  ti)
            print(
                np.linalg.norm(data_x_c -
                               ssmrf.seqdata_realimag_2complex(data_x_acc)))
            print(np.linalg.norm(data_x_c))
            data_x_acc = ssmrf.seqdata_complex_2realimag(data_x_c)
        #timing.stop().display('Bloch sim in loop ')
        #0.5* d||M*FT(x)-b||_2^2/dx = 2 * FT^-1(M*(FT(x) - b))
        # lamda * d(x^2)/dx = 2*lambda*x
        data_x_c = mask_ksp3d(nx, ny, Nk, FTm,
                              data_x_c - data_x0_c)  #data_x_c-data_x0_c#
        # gradient descent/update
        data_x_acc = data_x_acc - step * ssmrf.seqdata_complex_2realimag(
            data_x_c)
        #data_x_c   = data_x_c - mask_ksp3d(nx, ny, Nk, FTm, data_x_c) + data_x0_c
        #data_x_acc = ssmrf.seqdata_complex_2realimag(data_x_c)
        #data_x_c      = (wavel1_data(nx, ny, ssmrf.seqdata_realimag_2complex(data_x_acc)))
        # apply CNN model, x-->parameters
        print('gradient 0.5* d||f(p)-b||_2^2/dp: %g' %
              np.linalg.norm(data_x0_c - data_x_c))
        #could do soft thresholding on test_outy here, i.e. test_outy = threshold(test_outy)
        #test_outy     = wavel1_par(nx, ny, test_outy) #
        #test_outy     = constraints( test_outy )
        #test_outy     = tv_par(nx, ny, test_outy)
        #test_outy  = constraints( test_outy )
        sio.savemat(pathdat + 'cnn_cs_testouty.mat', {'test_outy': test_outy})