def test_keras_models(self, model, save_setup, optimizer,
                          check_configuration_identical):
        train_dataset, _ = util.train_test_mnist_datasets(nbatches=10,
                                                          micro_batch_size=32,
                                                          shuffle=False)
        # train model
        keras_model = model
        keras_model.compile(
            optimizer(),
            loss=keras.losses.SparseCategoricalCrossentropy(),
            metrics=[keras.metrics.SparseCategoricalAccuracy()])
        keras_model.fit(train_dataset, epochs=2, verbose=0)
        keras_model.save(save_setup['save_dir'])

        reloaded_model = keras.models.load_model(save_setup['save_dir'])
        check_configuration_identical(reloaded_model, keras_model)

        # continue training on the original model
        keras_model.fit(train_dataset, epochs=2, shuffle=False, verbose=0)

        # continue training on the loaded model
        reloaded_model.fit(train_dataset, epochs=2, shuffle=False, verbose=0)

        util.compare_weights(reloaded_model.get_weights(), keras.get_weights(),
                             1e-6)
    def test_save_load_train_models(self, model, save_setup, parallel_strategy,
                                    optimizer_type,
                                    check_configuration_identical):
        train_dataset, _ = util.train_test_mnist_datasets(nbatches=10,
                                                          micro_batch_size=32,
                                                          shuffle=False)
        # create and train model
        tnt_model = get_tnt_model_compiled(model, parallel_strategy,
                                           optimizer_type())
        tnt_model.fit(train_dataset, epochs=2, verbose=0)
        tnt_model.save(save_setup['save_dir'],
                       tnt_save_all_devices=save_setup['all_devices'])

        # load into a new tnt.Model
        reloaded_tnt_model = tnt.models.load_model(save_setup['save_dir'])
        assert isinstance(reloaded_tnt_model, tnt.Model)
        check_configuration_identical(reloaded_tnt_model, tnt_model)

        # continue training on the original model
        tnt_model.fit(train_dataset, epochs=2, verbose=0)

        # continue training on the loaded model
        reloaded_tnt_model.fit(train_dataset, epochs=2, verbose=0)

        util.compare_weights(reloaded_tnt_model.get_weights(),
                             tnt_model.get_weights(), 1e-6)
Ejemplo n.º 3
0
    def test_save_load_before_training(self, model, save_setup,
                                       parallel_strategy,
                                       check_configuration_identical):
        tnt_model = get_tnt_model_compiled(model, parallel_strategy)
        tnt_model.save(save_setup['save_dir'],
                       tnt_save_all_devices=save_setup['all_devices'])
        reloaded_tnt_model = tnt.models.load_model(save_setup['save_dir'],
                                                   compile=True)

        check_configuration_identical(reloaded_tnt_model, tnt_model)
        util.compare_weights(reloaded_tnt_model.get_weights(),
                             tnt_model.get_weights(), 1e-6)
Ejemplo n.º 4
0
    def test_compare_accuracy_against_reference(self, tarantella_framework,
                                                model_runners,
                                                micro_batch_size,
                                                number_epochs, nbatches):
        batch_size = micro_batch_size * tarantella_framework.get_size()
        nsamples = nbatches * batch_size

        tnt_model_runner, reference_model_runner = model_runners
        # reuse model with its initial weights
        tnt_model_runner.reset_weights()
        reference_model_runner.reset_weights()

        # verify that both models have identical weights
        tnt_initial_weights = tnt_model_runner.get_weights()
        reference_initial_weights = reference_model_runner.get_weights()
        util.compare_weights(tnt_initial_weights, reference_initial_weights,
                             1e-6)

        # train reference model
        (ref_train_dataset,
         ref_test_dataset) = util.load_dataset(mnist.load_mnist_dataset,
                                               train_size=nsamples,
                                               train_batch_size=batch_size,
                                               test_size=10000,
                                               test_batch_size=batch_size)
        reference_model_runner.train_model(ref_train_dataset, number_epochs)
        reference_loss_accuracy = reference_model_runner.evaluate_model(
            ref_test_dataset)

        # train Tarantella model
        (train_dataset,
         test_dataset) = util.load_dataset(mnist.load_mnist_dataset,
                                           train_size=nsamples,
                                           train_batch_size=batch_size,
                                           test_size=10000,
                                           test_batch_size=batch_size)
        tnt_model_runner.train_model(train_dataset, number_epochs)
        tnt_loss_accuracy = tnt_model_runner.evaluate_model(test_dataset)

        rank = tarantella_framework.get_rank()
        logging.getLogger().info("[Rank %d] Tarantella[loss, accuracy] = %s" %
                                 (rank, str(tnt_loss_accuracy)))
        logging.getLogger().info("[Rank %d] Reference [loss, accuracy] = %s" %
                                 (rank, str(reference_loss_accuracy)))
        assert np.isclose(tnt_loss_accuracy[0],
                          reference_loss_accuracy[0],
                          atol=1e-2)  # losses might not be identical
        assert np.isclose(tnt_loss_accuracy[1],
                          reference_loss_accuracy[1],
                          atol=1e-2)
Ejemplo n.º 5
0
    def test_partition_core_models(self, model_and_partitions):
        num_micro_batches = 1
        model, partition_gen, expected_num_partitions, _, expected_model_gen = model_and_partitions
        rank_mapper = rmapper.RankMapper(
            num_ranks=expected_num_partitions,
            pipeline_graph=partition_gen.get_pipeline_graph())

        for rank in range(expected_num_partitions):
            partition_id = rank_mapper.get_partition_for_rank(rank)
            partition_graph = partition_gen.get_partition_graph(partition_id)

            cm_builder = core_model_builder.CoreModelBuilder(
                model, partition_id, partition_graph)
            core_model = cm_builder.get_model()

            reference_core_model = expected_model_gen(rank)
            utils.check_model_configuration_identical(core_model,
                                                      reference_core_model)
            utils.compare_weights(core_model.get_weights(),
                                  reference_core_model.get_weights(), 1e-6)
Ejemplo n.º 6
0
    def test_compare_weights_across_ranks(self, tarantella_framework,
                                          model_runner, micro_batch_size,
                                          nbatches, number_epochs):
        comm_size = tarantella_framework.get_size()
        batch_size = micro_batch_size * comm_size
        nsamples = nbatches * batch_size

        (train_dataset, _) = util.load_dataset(mnist.load_mnist_dataset,
                                               train_size=nsamples,
                                               train_batch_size=batch_size,
                                               test_size=0,
                                               test_batch_size=batch_size)
        model_runner.reset_weights()
        model_runner.train_model(train_dataset, number_epochs)
        final_weights = model_runner.get_weights()

        # broadcast the weights from the master rank to all the participating ranks
        model_runner.model._broadcast_weights()

        reference_rank_weights = model_runner.get_weights()
        util.compare_weights(final_weights, reference_rank_weights, 1e-6)
Ejemplo n.º 7
0
    def test_save_weights_after_training(self, model, save_setup,
                                         parallel_strategy, tf_format):
        # create un-shuffling dataset to be able to continue training identically
        # both on the `tnt.Model` and then on the `keras.Model`
        train_dataset, _ = util.train_test_mnist_datasets(nbatches=10,
                                                          micro_batch_size=32,
                                                          shuffle=False)
        # create and train model
        tnt_model = get_tnt_model_compiled(model, parallel_strategy)
        tnt_model.fit(train_dataset, epochs=1, verbose=0)

        os.makedirs(save_setup['save_dir'], exist_ok=True)
        save_path = os.path.join(save_setup['save_dir'], "weight")
        if not tf_format:
            save_path = save_path + ".h5"

        tnt_model.save_weights(save_path,
                               tnt_save_all_devices=save_setup['all_devices'])

        # create new model with same architecture and optimizer
        if isinstance(model, tf.keras.Sequential):
            model_from_config = tnt.Sequential.from_config(
                tnt_model.get_config())
        elif isinstance(model, tf.keras.Model):
            model_from_config = tnt.models.model_from_config(
                tnt_model.get_config())

        model_from_config.compile(**get_compile_params())
        model_from_config.load_weights(save_path)
        util.compare_weights(tnt_model.get_weights(),
                             model_from_config.get_weights(), 1e-6)

        # using the TF format saves the state together with the weights
        # such that training can continue on the loaded model
        if tf_format:
            tnt_model.fit(train_dataset, epochs=1, verbose=0)
            model_from_config.fit(train_dataset, epochs=1, verbose=0)

            util.compare_weights(tnt_model.get_weights(),
                                 model_from_config.get_weights(), 1e-6)
    def test_simple_keras_models(self, save_setup, optimizer):
        def get_model():
            # Create a simple model.
            inputs = keras.Input(shape=(32, ))
            outputs = keras.layers.Dense(1)(inputs)
            model = keras.Model(inputs, outputs)
            model.compile(optimizer=optimizer(), loss="mean_squared_error")
            return model

        tf.random.set_seed(42)
        model = get_model()

        # Train the model.
        test_input = np.ones((128, 32))
        test_target = np.ones((128, 1))
        model.fit(test_input, test_target)
        model.save(save_setup['save_dir'])

        tf.random.set_seed(42)
        reconstructed_model = keras.models.load_model(save_setup['save_dir'])

        # Let's check:
        np.testing.assert_allclose(model.predict(test_input),
                                   reconstructed_model.predict(test_input))
        util.compare_weights(reconstructed_model.get_weights(),
                             model.get_weights(), 1e-6)

        tf.random.set_seed(42)
        reconstructed_model.fit(test_input,
                                test_target,
                                epochs=3,
                                shuffle=False)
        tf.random.set_seed(42)
        model.fit(test_input, test_target, epochs=3, shuffle=False)
        util.compare_weights(model.get_weights(),
                             reconstructed_model.get_weights(), 1e-6)