Ejemplo n.º 1
0
def compute_match_save(SLIDES_PATH, SLIDE_START, SLIDE_END,
                       FRAME_SAMPLE_SAVE_FOLDER,
                       SLIDE_KEYPTS_DESCS_PKL_SAVE_PATH, VID_START, VID_END,
                       VID_KEYPTS_DESCS_PKL_SAVE_PATH,
                       FINAL_FIGURES_RESULTS_SAVE_PATH):

    NUM_SLIDES = SLIDE_END - SLIDE_START
    NUM_FRAMES = VID_END - VID_START
    ## getting filenames
    videoFrameNames = [
        filename for filename in os.listdir(FRAME_SAMPLE_SAVE_FOLDER)
        if filename.endswith(".png")
    ]
    videoFrameNames = slidesInRange(videoFrameNames, VID_START, VID_END)

    slideNames = [
        filename for filename in os.listdir(SLIDES_PATH)
        if filename.endswith(".png")
    ]
    slideNames = slidesInRange(slideNames, SLIDE_START, SLIDE_END)

    sampleImgSlides = cv2.imread(slideImgPath + slideNames[0], 0)
    sampleVidSlides = cv2.imread(vidFramePath + videoFrameNames[0], 0)

    ## slide and video dimensions
    slideDimensions = (sampleImgSlides.shape[0], sampleImgSlides.shape[1])
    vidDimensions = (sampleVidSlides.shape[0], sampleVidSlides.shape[1])

    ## load dictionary of things
    slideImgKeypts = pickle.load(open(SLIDE_KEYPTS_DESCS_PKL_SAVE_PATH, "rb"))
    vidImgKeypts = pickle.load(open(VID_KEYPTS_DESCS_PKL_SAVE_PATH, "rb"))

    slideImgKeyptsDesc = dict()
    vidImgKeyptsDesc = dict()

    ## load slide img, keypoints
    for sn in slideNames:
        path = slideImgPath + sn
        slideImgKeyptsDesc[sn] = convertPickledToKPDesc(slideImgKeypts[path])

    for vidName in videoFrameNames:
        path = vidFramePath + vidName
        vidImgKeyptsDesc[vidName] = convertPickledToKPDesc(vidImgKeypts[path])

    FLANN_INDEX_KDTREE = 0
    index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
    search_params = dict(checks=50)

    ## matches is a list of DMatch objects
    flann = cv2.FlannBasedMatcher(index_params, search_params)

    matchSlideFrameDict = dict()

    matchMetric = dict()
    matchMetricNotNormalized = dict()

    ## cross matching
    matchID = 0
    for slide in range(0, NUM_SLIDES):
        for frame in range(0, NUM_FRAMES):
            print("Slide, Frame", (slide, frame), slideNames[slide],
                  videoFrameNames[frame])
            slidekpts, slideDescs = slideImgKeyptsDesc[slideNames[slide]]
            framekpts, frameDescs = vidImgKeyptsDesc[videoFrameNames[frame]]
            matches = flann.knnMatch(np.asarray(slideDescs, np.float32),
                                     np.asarray(frameDescs, np.float32),
                                     k=2)

            matchPairs = []
            distances = []
            good = []
            slideKeypoints = []
            frameKeypoints = []

            good = []

            for m, n in matches:
                if m.distance < 0.75 * n.distance:
                    slideKeypoints.append(slidekpts[m.queryIdx].pt)
                    frameKeypoints.append(framekpts[m.trainIdx].pt)
                    good.append(m)
            '''
            slideImg = cv2.imread(slideImgPath + slideNames[slide], 0)  
            vidImg = cv2.imread(vidFramePath + videoFrameNames[frame], 0)
            saveMatches(slidekpts, framekpts, slideImg, vidImg, good, savePath + str(slide) + '-' + str(frame) + '-match.jpg')
            '''

            matchMetric[(slide, frame)] = computeSumDiffKeypoints(
                slideKeypoints, frameKeypoints, slideDimensions, vidDimensions)
            matchMetricNotNormalized[(slide, frame)] = computeSumDiffKeypoints(
                slideKeypoints, frameKeypoints, slideDimensions, vidDimensions,
                False)

    ## save visualizations
    mat = visualize(
        matchMetric, NUM_SLIDES, NUM_FRAMES, FINAL_FIGURES_RESULTS_SAVE_PATH +
        "normalized_sumDistanceKeypoints.jpg")
    visualize(matchMetricNotNormalized, NUM_SLIDES, NUM_FRAMES,
              FINAL_FIGURES_RESULTS_SAVE_PATH + "sumDistanceKeypoints.jpg")

    ## save matrix as txt
    np.savetxt(FINAL_FIGURES_RESULTS_SAVE_PATH +
               "slides_by_vidframes_metric.txt",
               mat,
               fmt='%d')

    col_best_prediction = {}
    for col in range(NUM_FRAMES):
        slides = list(mat[:, col])
        best = slides.index(min(slides))
        col_best_prediction[col] = best

    print(json.dumps(col_best_prediction, sort_keys=True))
    filename for filename in os.listdir(slideImgPath)
    if filename.endswith(".png")
]
slideNames = slidesInRange(slideNames, 2, 30)

## load dictionary of things
slideImgKeypts = pickle.load(open(slideImgKeyptsFile, "rb"))
vidImgKeypts = pickle.load(open(vidImgKeyptsFle, "rb"))

slideImgKeyptsDesc = dict()
vidImgKeyptsDesc = dict()

## load slide img, keypoints
for sn in slideNames:
    path = slideImgPath + sn
    slideImgKeyptsDesc[sn] = convertPickledToKPDesc(slideImgKeypts[path])

for vidName in videoFrameNames:
    path = vidFramePath + vidName
    vidImgKeyptsDesc[vidName] = convertPickledToKPDesc(vidImgKeypts[path])

FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
search_params = dict(checks=50)

## matches is a list of DMatch objects
flann = cv2.FlannBasedMatcher(index_params, search_params)

matchSlideFrameDict = dict()

## cross matching
## Load slides, compute keypoint matching to following slide
slideNames = [ filename for filename in os.listdir( slideImgPath) if filename.endswith(".jpg")] 
slideNames = slidesInRange(slideNames, 0, 74)

## load dictionary of things
slideImgKeyptsFile = "./slide_keypts/slideKeyptsDesc.pkl"
slideImgKeypts = pickle.load( open( slideImgKeyptsFile, "rb" ) )

print(slideImgKeypts.keys())

slideImgKeyptsDesc = dict()

## load slide img, keypoints
for sn in slideNames:
    path = slideImgPath + sn
    slideImgKeyptsDesc[sn] = convertPickledToKPDesc(slideImgKeypts[path])



FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)

## matches is a list of DMatch objects
flann = cv2.FlannBasedMatcher(index_params, search_params)

matchSlideFrameDict = dict()

matchMetric = dict()
matchMetricNotNormalized = dict()