Ejemplo n.º 1
0
    def get_changed_entries(self):
        """
        get_changed_entries returns all changed entries in a given dataset
        """
        if self.new_data and self.all_data:
            for i in self.new_data:
                try:
                    data = self.find_in_data(
                        self.all_data,
                        self.key,
                        i[self.key]
                    )
                except IndexError:
                    continue
                if data:
                    data_copy = {}
                    for key, value in data.iteritems():
                        if not key.startswith("_") and key != "date":
                            data_copy[key] = value
                    i_copy = copy(i)
                    del(i_copy["date"])

                    if i_copy != data_copy:
                        master = self.__master_string(
                            self.tablename, i_copy[self.key]
                        )
                        data["date"] = i["date"]
                        for key, value in i_copy.iteritems():
                            if i[key] != data[key]:
                                changed_field = key
                                diff_string = diff(str(i[key]), str(data[key]))
                                string = self.__diff_string(
                                    changed_field,
                                    i[key],
                                    data,
                                    key,
                                    diff_string,
                                )
                                data[key] = i[key]
                                master += string
                        print master
                        self.orm.update(data)
Ejemplo n.º 2
0
    def get_changed_entries(self):
        """
        get_changed_entries returns all changed entries in a given dataset
        """
        if self.new_data and self.all_data:
            for i in self.new_data:
                try:
                    data = self.find_in_data(self.all_data, self.key,
                                             i[self.key])
                except IndexError:
                    continue
                if data:
                    data_copy = {}
                    for key, value in data.iteritems():
                        if not key.startswith("_") and key != "date":
                            data_copy[key] = value
                    i_copy = copy(i)
                    del (i_copy["date"])

                    if i_copy != data_copy:
                        master = self.__master_string(self.tablename,
                                                      i_copy[self.key])
                        data["date"] = i["date"]
                        for key, value in i_copy.iteritems():
                            if i[key] != data[key]:
                                changed_field = key
                                diff_string = diff(str(i[key]), str(data[key]))
                                string = self.__diff_string(
                                    changed_field,
                                    i[key],
                                    data,
                                    key,
                                    diff_string,
                                )
                                data[key] = i[key]
                                master += string
                        print master
                        self.orm.update(data)
Ejemplo n.º 3
0
    def calibrate(self):
        gdf = calibration.GyroscopeDataFile(self.csv)
        gdf.parse()

        signal_x = gdf.get_signal_x()
        signal_y = gdf.get_signal_y()
        signal_z = gdf.get_signal_z()
        timestamps = gdf.get_timestamps()

        # Smooth out the noise
        smooth_signal_x = self.gaussian_filter(signal_x)
        smooth_signal_y = self.gaussian_filter(signal_y)
        smooth_signal_z = self.gaussian_filter(signal_z)
        
#         g_file = open('g.txt', 'w')
#             
#         for i in range(0, len(smooth_signal_x), 1):
#             g_file.write("%lf %lf %lf %d\n" % (smooth_signal_x.item(i),smooth_signal_y.item(i),smooth_signal_z.item(i),timestamps[i]))
#             
#         g_file.close()

#         render_trio(signal_x, signal_y, signal_z, timestamps)
#         render_trio(smooth_signal_x, smooth_signal_y, smooth_signal_z, timestamps)

        # g is the difference between the smoothed version and the actual version
        g = [ [], [], [] ]
        delta_g = [ [], [], [] ]
        delta_g[0] = np.subtract(signal_x, smooth_signal_x).tolist()
        delta_g[1] = np.subtract(signal_y, smooth_signal_y).tolist()
        delta_g[2] = np.subtract(signal_z, smooth_signal_z).tolist()
        g[0] = signal_x #np.subtract(signal_x, smooth_signal_x).tolist()
        g[1] = signal_y #np.subtract(signal_y, smooth_signal_y).tolist()
        g[2] = signal_z #np.subtract(signal_z, smooth_signal_z).tolist()
        dgt = utilities.diff(timestamps)

        theta = [ [], [], [] ]
        delta_theta = [ [], [], [] ]
        for component in [0, 1, 2]:
            sum_of_consecutives = np.add(g[component][:-1], g[component][1:])
            # The 2 is for the integration - and 10e9 for the nanosecond
            dx_0 = np.divide(sum_of_consecutives, 2 * 1000000000)
            num_0 = np.multiply(dx_0, dgt)
            theta[component] = [0]
            theta[component].extend(np.cumsum(num_0))

            sum_of_delta_consecutives = np.add(delta_g[component][:-1], delta_g[component][1:])
            dx_0 = np.divide(sum_of_delta_consecutives, 2 * 1000000000)
            num_0 = np.multiply(dx_0, dgt)
            delta_theta[component] = [0]
            delta_theta[component].extend(np.cumsum(num_0))
            
    

        parts = self.mp4.split("/")
        pickle_file_name = parts[-1].split(".")[0]
        pickle_full_path = ".%s/%s.pickle" % ("/".join(parts[:-1]), pickle_file_name)
        print("Pickle file = %s" % pickle_full_path)
        
        

        import pickle
        videoObj = None
        if not os.path.exists(pickle_full_path):
            print("Pickle file not found - generating it")
            videoObj = GyroVideo(self.mp4)
            videoObj.read_video()
            fp = open(pickle_full_path, "w")
            pickle.dump(videoObj, fp)
            fp.close()
        else:
            fp = open(pickle_full_path, "r")
            videoObj = pickle.load(fp)
            fp.close()

        print "Calibrating parameters"
        print "=====================+"

        parameters = np.asarray([1000, 
                                    112859286.844093,
                                    0.0, 0.0, 0.0,
                                    -32763211.985663])

        import scipy.optimize
        result = scipy.optimize.minimize(self.calcErrorAcrossVideoObjective, parameters, (videoObj, theta, timestamps), 'Nelder-Mead', tol=0.001)
        print result

        focal_length = result['x'][0]
        gyro_delay = result['x'][1]
        gyro_drift = ( result['x'][2], result['x'][3], result['x'][4] )
        shutter_duration = result['x'][5]

        print "Focal length = %f" % focal_length
        print "Gyro delay   = %f" % gyro_delay
        print "Gyro drift   = (%f, %f, %f)" % gyro_drift
        print "Shutter duration= %f" % shutter_duration

        # Smooth out the delta_theta values - they must be fluctuating like crazy

        smooth_delta_x = self.gaussian_filter(delta_theta[0], 128, 16)
        smooth_delta_y = self.gaussian_filter(delta_theta[1], 128, 16)
        smooth_delta_z = self.gaussian_filter(delta_theta[2], 128, 16)
        return (delta_theta, timestamps, focal_length, gyro_delay, gyro_drift, shutter_duration)
Ejemplo n.º 4
0
    def inputs(self):
        gdf = calibration.GyroscopeDataFile(self.csv)
        gdf.parse()

        signal_x = gdf.get_signal_x()
        signal_y = gdf.get_signal_y()
        signal_z = gdf.get_signal_z()
        timestamps = gdf.get_timestamps()

        # Smooth out the noise
        smooth_signal_x = self.gaussian_filter(signal_x)
        smooth_signal_y = self.gaussian_filter(signal_y)
        smooth_signal_z = self.gaussian_filter(signal_z)
        
#         g_file = open('g.txt', 'w')
#             
#         for i in range(0, len(smooth_signal_x), 1):
#             g_file.write("%lf %lf %lf %d\n" % (smooth_signal_x.item(i),smooth_signal_y.item(i),smooth_signal_z.item(i),timestamps[i]))
#             
#         g_file.close()

        render_trio(signal_x, signal_y, signal_z, timestamps)
        render_trio(smooth_signal_x, smooth_signal_y, smooth_signal_z, timestamps)

        # g is the difference between the smoothed version and the actual version
        g = [ [], [], [] ]
        delta_g = [ [], [], [] ]
        delta_g[0] = np.subtract(signal_x, smooth_signal_x).tolist()
        delta_g[1] = np.subtract(signal_y, smooth_signal_y).tolist()
        delta_g[2] = np.subtract(signal_z, smooth_signal_z).tolist()
        g[0] = signal_x #np.subtract(signal_x, smooth_signal_x).tolist()
        g[1] = signal_y #np.subtract(signal_y, smooth_signal_y).tolist()
        g[2] = signal_z #np.subtract(signal_z, smooth_signal_z).tolist()
        dgt = utilities.diff(timestamps)

        theta = [ [], [], [] ]
        delta_theta = [ [], [], [] ]
        for component in [0, 1, 2]:
            sum_of_consecutives = np.add(g[component][:-1], g[component][1:])
            # The 2 is for the integration - and 10e9 for the nanosecond
            dx_0 = np.divide(sum_of_consecutives, 2 * 1000000000)
            num_0 = np.multiply(dx_0, dgt)
            theta[component] = [0]
            theta[component].extend(np.cumsum(num_0))

            sum_of_delta_consecutives = np.add(delta_g[component][:-1], delta_g[component][1:])
            dx_0 = np.divide(sum_of_delta_consecutives, 2 * 1000000000)
            num_0 = np.multiply(dx_0, dgt)
            delta_theta[component] = [0]
            delta_theta[component].extend(np.cumsum(num_0))
            
        

        # UNKNOWNS
        focal_length = 1080.0
        gyro_delay = 0
        gyro_drift = (0, 0, 0)
        shutter_duration = 0

        parts = self.mp4.split("/")
        pickle_file_name = parts[-1].split(".")[0]
        pickle_full_path = ".%s/%s.pickle" % ("/".join(parts[:-1]), pickle_file_name)
        print("Pickle file = %s" % pickle_full_path)
        
        

        import pickle
        videoObj = None
        if not os.path.exists(pickle_full_path):
            print("Pickle file not found - generating it")
            videoObj = GyroVideo(self.mp4)
            videoObj.read_video()
            fp = open(pickle_full_path, "w")
            pickle.dump(videoObj, fp)
            fp.close()
        else:
            fp = open(pickle_full_path, "r")
            videoObj = pickle.load(fp)
            fp.close()

        
        return (delta_theta, timestamps)
Ejemplo n.º 5
0
    def calibrate(self):
        gdf = self.__import_gyro_data()

        signal_x = gdf.get_signal_x()
        signal_y = gdf.get_signal_y()
        signal_z = gdf.get_signal_z()
        timestamps = gdf.get_timestamps()

        # Smooth out the noise
        smooth_signal_x = self.gaussian_filter(signal_x)
        smooth_signal_y = self.gaussian_filter(signal_y)
        smooth_signal_z = self.gaussian_filter(signal_z)

        if DEBUG_PLOT:
            self.render_trio(signal_x, signal_y, signal_z, timestamps)
            self.render_trio(smooth_signal_x, smooth_signal_y, smooth_signal_z, timestamps)

        # g is the difference between the smoothed version and the actual version
        g = [[], [], []]
        delta_g = [[], [], []]
        delta_g[0] = np.subtract(signal_x, smooth_signal_x).tolist()
        delta_g[1] = np.subtract(signal_y, smooth_signal_y).tolist()
        delta_g[2] = np.subtract(signal_z, smooth_signal_z).tolist()
        g[0] = signal_x  # np.subtract(signal_x, smooth_signal_x).tolist()
        g[1] = signal_y  # np.subtract(signal_y, smooth_signal_y).tolist()
        g[2] = signal_z  # np.subtract(signal_z, smooth_signal_z).tolist()
        dgt = utilities.diff(timestamps) # dgt 是每个时间戳的间隔

        theta = [[], [], []]
        delta_theta = [[], [], []]
        for component in [0, 1, 2]:
            sum_of_consecutives = np.add(g[component][:-1], g[component][1:]) #首尾相加,作为零漂进行校准
            # The 2 is for the integration - and 10e9 for the nanosecond
            dx_0 = np.divide(sum_of_consecutives, 2 * 1000000000) # 计算出每段事件的速度漂移
            num_0 = np.multiply(dx_0, dgt)
            theta[component] = [0]
            theta[component].extend(np.cumsum(num_0)) 

            sum_of_delta_consecutives = np.add(
                delta_g[component][:-1], delta_g[component][1:]
            )
            dx_0 = np.divide(sum_of_delta_consecutives, 2 * 1000000000)
            num_0 = np.multiply(dx_0, dgt)
            delta_theta[component] = [0]
            delta_theta[component].extend(np.cumsum(num_0)) # 同理计算出delta_theta的漂移

        # UNKNOWNS
        pixel_size = 2.9  # 2.9um
        focus_efficient = 3.2  # 21 mm
        focus_in_pixel = focus_efficient / (pixel_size / 1000)
        focal_length = focus_in_pixel
        gyro_delay = 0
        gyro_drift = (0, 0, 0)
        shutter_duration = 0

        # parts = self.mp4.split("/")
        # pickle_file_name = parts[-1].split(".")[0]
        # pickle_full_path = "%s/%s.pickle" % ("/".join(parts[:-1]), pickle_file_name)
        # print("Pickle file = %s" % pickle_full_path)
        pickle_full_path = "./videodata.data"
        videoObj = self.__read_video()

        print("Calibrating parameters")
        print("=====================+")

        parameters = np.asarray([focal_length, gyro_delay, gyro_drift[0], 
                                gyro_drift[1], gyro_drift[2], shutter_duration])

        

        result = scipy.optimize.minimize(
            self.calcErrorAcrossVideoObjective,
            parameters,
            (videoObj, theta, timestamps),
            "Nelder-Mead",
            tol=0.001,
        )
        print(result)

        focal_length = result["x"][0]
        gyro_delay = result["x"][1]
        gyro_drift = (result["x"][2], result["x"][3], result["x"][4])
        shutter_duration = result["x"][5]

        print("Focal length = %f" % focal_length)
        print("Gyro delay   = %f" % gyro_delay)
        print("Gyro drift   = (%f, %f, %f)" % gyro_drift)
        print("Shutter duration= %f" % shutter_duration)

        # Smooth out the delta_theta values - they must be fluctuating like crazy

        smooth_delta_x = self.gaussian_filter(delta_theta[0], 128, 16)
        smooth_delta_y = self.gaussian_filter(delta_theta[1], 128, 16)
        smooth_delta_z = self.gaussian_filter(delta_theta[2], 128, 16)
        return (
            delta_theta,
            timestamps,
            focal_length,
            gyro_delay,
            gyro_drift,
            shutter_duration,
        )
Ejemplo n.º 6
0
    def calibrate(self):
        gdf = calibration.GyroscopeDataFile(self.csv)
        gdf.parse()

        signal_x = gdf.get_signal_x()
        signal_y = gdf.get_signal_y()
        signal_z = gdf.get_signal_z()
        timestamps = gdf.get_timestamps()

        # Smooth out the noise
        smooth_signal_x = self.gaussian_filter(signal_x)
        smooth_signal_y = self.gaussian_filter(signal_y)
        smooth_signal_z = self.gaussian_filter(signal_z)

        render_trio(signal_x, signal_y, signal_z, timestamps)
        render_trio(smooth_signal_x, smooth_signal_y, smooth_signal_z, timestamps)

        # g is the difference between the smoothed version and the actual version
        g = [ [], [], [] ]
        delta_g = [ [], [], [] ]
        delta_g[0] = np.subtract(signal_x, smooth_signal_x).tolist()
        delta_g[1] = np.subtract(signal_y, smooth_signal_y).tolist()
        delta_g[2] = np.subtract(signal_z, smooth_signal_z).tolist()
        g[0] = signal_x #np.subtract(signal_x, smooth_signal_x).tolist()
        g[1] = signal_y #np.subtract(signal_y, smooth_signal_y).tolist()
        g[2] = signal_z #np.subtract(signal_z, smooth_signal_z).tolist()
        dgt = utilities.diff(timestamps)

        theta = [ [], [], [] ]
        delta_theta = [ [], [], [] ]
        for component in [0, 1, 2]:
            sum_of_consecutives = np.add(g[component][:-1], g[component][1:])
            # The 2 is for the integration - and 10e9 for the nanosecond
            dx_0 = np.divide(sum_of_consecutives, 2 * 1000000000)
            num_0 = np.multiply(dx_0, dgt)
            theta[component] = [0]
            theta[component].extend(np.cumsum(num_0))

            sum_of_delta_consecutives = np.add(delta_g[component][:-1], delta_g[component][1:])
            dx_0 = np.divide(sum_of_delta_consecutives, 2 * 1000000000)
            num_0 = np.multiply(dx_0, dgt)
            delta_theta[component] = [0]
            delta_theta[component].extend(np.cumsum(num_0))

        # UNKNOWNS
        focal_length = 1080.0
        gyro_delay = 0
        gyro_drift = (0, 0, 0)
        shutter_duration = 0

        parts = self.mp4.split("/")
        pickle_file_name = parts[-1].split(".")[0]
        pickle_full_path = "%s/%s.pickle" % ("/".join(parts[:-1]), pickle_file_name)
        print("Pickle file = %s" % pickle_full_path)

        import pickle
        videoObj = None
        if not os.path.exists(pickle_full_path):
            print("Pickle file not found - generating it")
            videoObj = GyroVideo(self.mp4)
            videoObj.read_video()
            fp = open(pickle_full_path, "w")
            pickle.dump(videoObj, fp)
            fp.close()
        else:
            fp = open(pickle_full_path, "r")
            videoObj = pickle.load(fp)
            fp.close()

        print "Calibrating parameters"
        print "=====================+"

        parameters = np.asarray([1080.0, 
                                    0.0,
                                    0.0, 0.0, 0.0,
                                    0.0])

        import scipy.optimize
        result = scipy.optimize.minimize(self.calcErrorAcrossVideoObjective, parameters, (videoObj, theta, timestamps), 'Nelder-Mead', tol=0.001)
        print result

        focal_length = result['x'][0]
        gyro_delay = result['x'][1]
        gyro_drift = ( result['x'][2], result['x'][3], result['x'][4] )
        shutter_duration = result['x'][5]

        print "Focal length = %f" % focal_length
        print "Gyro delay   = %f" % gyro_delay
        print "Gyro drift   = (%f, %f, %f)" % gyro_drift
        print "Shutter duration= %f" % shutter_duration

        # Smooth out the delta_theta values - they must be fluctuating like crazy

        smooth_delta_x = self.gaussian_filter(delta_theta[0], 128, 16)
        smooth_delta_y = self.gaussian_filter(delta_theta[1], 128, 16)
        smooth_delta_z = self.gaussian_filter(delta_theta[2], 128, 16)
        return (delta_theta, timestamps, focal_length, gyro_delay, gyro_drift, shutter_duration)
Ejemplo n.º 7
0
    def run(self, n, weights, step=100, threshold=1e-4, runstore=None, progress=True):
        """
        Simulate next `n` generations. Abort if average overall difference 
        between consecutive generations is smaller than `threshold` (i.e.
        an equilibrium has been reached).
                
        Args:
            weights: dictionary of weights to be used in the calculation
                     of the next generation frequencies
            n: int
                maximum number of generations to run
            step: int
                frequencies are stored every `step` generations
            threshold: float
                the `threshold` is divided by the frequency size 
                (arr.ndim) to calculate `thresh`, and the simulation run
                is stopped if the average difference between consecutive
                generations has become smaller than `thresh`.
            runstore: storage.runstore instance
                if provided, simulation run is stored in datafile
            progress: progressbar.ProgressBar instance
                if none is provided, a new one is created
        """
        MIG = weights['migration']
        VIAB_SEL = weights['viability_selection']
        REPRO_CONST = weights['constant_reproduction']
        dyn_repro_weights = weights['dynamic_reproduction']
        pt = dyn_repro_weights[0][0].pt
        #~ SR,TP = weights['dynamic_reproduction']
        #~ pt = SR.pt
        
        self.runstore = runstore
        n += self.generation
        thresh = threshold/self.size   # on average, each of the frequencies should change less than `thresh` if an equilibrium has been reached
        
        still_changing = True
        if isinstance(progress, (pbar.ProgressBar, DummyProgressBar)):
            pass   # reuse progressbar
        elif progress is False:
            progress = generate_progressbar('dummy')
        elif progress is True:
            progress = generate_progressbar('real')
            #~ widgets=['Generation: ', pbar.Counter(), ' (', pbar.Timer(), ')']
            #~ progress = pbar.ProgressBar(widgets=widgets, maxval=1e6).start()   # don't provide maxval! , fd=sys.stdout
        else:
            raise TypeError, "`progress` must be True, False, or an existing progressbar instance"
        while still_changing and self.generation < n:
            # data storage:
            if self.runstore != None:
                if self.generation % step == 0:
                    #~ self.runstore.dump_data(self.generation, self.freqs, self.all_sums())
                    self.runstore.dump_data(self)
                    #~ self.runstore.flush()
                    
            previous = np.copy(self.freqs)
            
            ### migration ##################################
            self.freqs = np.sum(self.freqs[np.newaxis,...] * MIG, 1)   # sum over `source` axis
            self.normalize()
            
            ### viability selection ########################
            self.freqs = self.freqs * VIAB_SEL
            self.normalize()
            
            ### reproduction ###############################
            #~ # species recognition:
            #~ SR.calculate( self.get_sums(['backA','backB']) )
            #~ 
            #~ # trait preferences:
            #~ TP.calculate( self.get_sums('trait') )
            REPRO_DYN = 1. #np.ones( (1,)*self.repro_dim )
            for DRW, target_loci in dyn_repro_weights:
                DRW.calculate( self.get_sums(target_loci) )
                REPRO_DYN = REPRO_DYN * DRW.extended()
            
            # offspring production:
            females = extend( self.freqs, self.repro_dim, self.repro_idxs['female'] )
            males = extend( self.freqs, self.repro_dim, self.repro_idxs['male'] )
            #~ self.freqs = sum_along_axes( females * males * R * SR.extended() * TP.extended(), self.repro_idxs['offspring'] )
            self.freqs = sum_along_axes( females * males * \
                                         REPRO_CONST * \
                                         REPRO_DYN, self.repro_idxs['offspring'] )
            self.normalize()
            
            self.generation += 1
            progress.update(self.generation)
            still_changing = utils.diff(self.freqs, previous) > thresh
        
        self.eq = not still_changing
        if self.runstore != None:   # store final state
            self.runstore.dump_data(self)
            if self.eq:
                state_desc = 'eq'
            else:
                state_desc = 'max'
            self.runstore.record_special_state(self.generation, state_desc)

        # return ProgressBar instance so we can reuse it for further running:
        return progress
    def test_diff(self):
        output = utilities.diff([0, 1, 2, 3, 4])

        self.assertEqual(output.tolist(), [1, 1, 1, 1])
def parse_inputs(csv, video_name):
    gdf = calibration.GyroscopeDataFile(csv)
    gdf.parse()

    signal_x = gdf.get_signal_x()
    signal_y = gdf.get_signal_y()
    signal_z = gdf.get_signal_z()
    timestamps = gdf.get_timestamps()

    
    matlab_gyro_file_path = "%s.txt" % video_name   
    
    
    if not os.path.exists(matlab_gyro_file_path):
        print("Matlab gyro file not found - generating it")
        
        matlab_gyro_file = open(matlab_gyro_file_path, 'w')
        matlab_gyro_file.write("size: [%d 4]\n" % len(signal_x))
        for i in range(len(signal_x)):
            matlab_gyro_file.write(str(signal_x[i])+" "+str(signal_y[i])+" "+str(signal_z[i])+" "+str(timestamps[i])+"\n")
        
        timestamp_list = []
        vidcap = cv2.VideoCapture("%s.mp4" % video_name)
        success, frame = vidcap.read()
        while success:
            timestamp = vidcap.get(0) * 1000 * 1000
#             print "%d %s" % (timestamp_count, timestamp)
            timestamp_list.append(timestamp)
            success, frame = vidcap.read()
#         print("**** %d ****" % timestamp_count)
        matlab_gyro_file.write("size: [%d 1]\n" % len(timestamp_list))
        for t in timestamp_list:
            matlab_gyro_file.write("%s\n" % str(t))
            
        matlab_gyro_file.close()

    # Smooth out the noise
    smooth_signal_x = gaussian_filter(signal_x)
    smooth_signal_y = gaussian_filter(signal_y)
    smooth_signal_z = gaussian_filter(signal_z)

    render_trio(signal_x, signal_y, signal_z, timestamps)
    render_trio(smooth_signal_x, smooth_signal_y, smooth_signal_z, timestamps)

    # g is the difference between the smoothed version and the actual version
    g = [ [], [], [] ]
    delta_g = [ [], [], [] ]
    delta_g[0] = np.subtract(signal_x, smooth_signal_x).tolist()
    delta_g[1] = np.subtract(signal_y, smooth_signal_y).tolist()
    delta_g[2] = np.subtract(signal_z, smooth_signal_z).tolist()
    g[0] = signal_x #np.subtract(signal_x, smooth_signal_x).tolist()
    g[1] = signal_y #np.subtract(signal_y, smooth_signal_y).tolist()
    g[2] = signal_z #np.subtract(signal_z, smooth_signal_z).tolist()
    dgt = utilities.diff(timestamps)

    theta = [ [], [], [] ]
    delta_theta = [ [], [], [] ]
    for component in [0, 1, 2]:
        sum_of_consecutives = np.add(g[component][:-1], g[component][1:])
        # The 2 is for the integration - and 10e9 for the nanosecond
        dx_0 = np.divide(sum_of_consecutives, 2 * 1000000000)
        num_0 = np.multiply(dx_0, dgt)
        theta[component] = [0]
        theta[component].extend(np.cumsum(num_0))

        sum_of_delta_consecutives = np.add(delta_g[component][:-1], delta_g[component][1:])
        dx_0 = np.divide(sum_of_delta_consecutives, 2 * 1000000000)
        num_0 = np.multiply(dx_0, dgt)
        delta_theta[component] = [0]
        delta_theta[component].extend(np.cumsum(num_0))
        
    
    pickle_full_path = "%s.pickle" % video_name
    print("Pickle file = %s" % pickle_full_path)
    
    videoObj = None
    if not os.path.exists(pickle_full_path):
        print("Pickle file not found - generating it")
        videoObj = GyroVideo("%s.mp4" % video_name)
        videoObj.read_video()
        fp = open(pickle_full_path, "w")
        pickle.dump(videoObj, fp)
        fp.close()
    else:
        fp = open(pickle_full_path, "r")
        videoObj = pickle.load(fp)
        fp.close()
        
    parameters = (videoObj, theta, timestamps)
    return parameters
Ejemplo n.º 10
0
    def test_diff(self):
        output = utilities.diff([0, 1, 2, 3, 4])

        self.assertEqual(output.tolist(), [1, 1, 1, 1])