def main(input_peptides, input_vaccine_sequences, output_vaccine_epitopes,
         verbose, log_file):
    ''' Reads the vaccine produced by Fischer's online tool and converts it into epitopes
    '''
    global LOGGER
    LOGGER = utilities.init_logging(verbose, log_file, log_append=False)

    LOGGER.info('Reading peptides...')
    with open(input_peptides) as f:
        peptides = set(r['peptide'] for r in csv.DictReader(f))
    LOGGER.info('Read %d peptides', len(peptides))

    LOGGER.info('Reading vaccine...')
    mosaics = FileReader.read_fasta(input_vaccine_sequences, in_type=Protein)
    LOGGER.info('Vaccine has %d mosaic(s)', len(mosaics))

    with open(output_vaccine_epitopes, 'w') as f:
        writer = csv.writer(f)
        writer.writerow(('cocktail', 'index', 'epitope'))

        for c, mos in enumerate(mosaics):
            pep_count = unk_count = 0
            for i in range(0, len(mos) - 8):
                pep = mos[i:i + 9]
                assert len(pep) == 9

                if pep in peptides:
                    writer.writerow((c, pep_count, pep))
                    pep_count += 1
                else:
                    unk_count += 1

            LOGGER.info('Mosaic %d - Recognized: %d Unknown %d', c + 1,
                        pep_count, unk_count)
Ejemplo n.º 2
0
import utilities

if __name__ == "__main__":
    # Parse commandline arguments
    cmd_parser = argparse.ArgumentParser("Runs Redbot")
    cmd_parser.add_argument('--debug',
                            action='store_true',
                            help="Enable debug logging")
    cmd_parser.add_argument('--token',
                            default=None,
                            help="Discord bot token to run with")

    args = cmd_parser.parse_args()

    # Initialise logging
    logger = utilities.init_logging(args.debug)

    # Initialise bot
    logger.debug("Initalising RedBot")
    _bot = redbot.init(logger=logger)

    # Assign token
    logger.debug("Assigning token")
    token = args.token or utilities.env("DISCORD_REDBOT_TOKEN")
    if not token:
        raise ValueError("Token not provided.")

    del args

    # Start bot instance
    logger.debug("Starting instance")
def main(verbose, log_file, bound_what, max_epitopes, max_aminoacids,
         output_vaccine, **kwargs):
    global LOGGER
    LOGGER = utilities.init_logging(verbose, log_file, log_append=False)

    # add coverage information to the model by enforcing at least 2 proteins covered
    if bound_what != 'immunogen':
        kwargs['min_proteins'] = 2
    solver, data = utilities.get_mosaic_solver_instance(LOGGER, **kwargs)
    solver.build_model()

    # update objective
    if bound_what == 'coverage':
        optimize_coverage(solver)
        LOGGER.info('Optimizing pathogen coverage')
    elif bound_what == 'conservation':
        optimize_conservation(solver)
        LOGGER.info('Optimizing average conservation')
    else:
        LOGGER.info('Optimizing immunogenicity')

    # preserve user sorting
    # initializing a larger problem with the optimal (and still feasible) solution of a smaller one
    # usually makes it much faster to solve. however, too small problems could be infeasible, in which
    # case it usually takes a very long time to prove them so
    for ep in map(int, max_epitopes):
        for am in map(int, max_aminoacids):
            LOGGER.info(
                'Solving with at most %d epitopes and most %d aminoacids', ep,
                am)
            solver.update_max_vertices(ep)
            solver.update_max_edge_cost(am)

            try:
                result = solver.solve()
            except RuntimeError:
                LOGGER.info(
                    'Problem was found infeasible with %d epitopes and %d aminoacids',
                    ep, am)
                continue

            # print info and save
            fname = output_vaccine.format(a=am, e=ep)
            LOGGER.info('Saving result to %s', fname)
            total_ig = 0.0
            with open(fname, 'w') as f:
                writer = csv.writer(f)
                writer.writerow(('cocktail', 'index', 'epitope'))
                for i, mosaic in enumerate(result):
                    LOGGER.info('Mosaic #%d', i + 1)
                    for j, (_, vertex) in enumerate(mosaic[:-1]):
                        writer.writerow(
                            (i, j,
                             data['epitope_data'][vertex - 1]['epitope']))
                        total_ig += data['epitope_data'][vertex -
                                                         1]['immunogen']
                        LOGGER.info(
                            '    %s - IG: %.2f',
                            data['epitope_data'][vertex - 1]['epitope'],
                            data['epitope_data'][vertex - 1]['immunogen'])
                LOGGER.info('Total immunogenicity: %.3f', total_ig)
def main(verbose, log_file):
    global LOGGER
    LOGGER = utilities.init_logging(verbose, log_file, log_append=False)
Ejemplo n.º 5
0
                        action='store_true',
                        help='reset global_step to zero')
    parser.add_argument('--likelihood_loss', choices=['l1', 'vgg_perception'])
    parser.add_argument('--to_use_imgn', default='true')
    parser.add_argument('--to_use_mean')
    parser.add_argument('--loss_test')
    parser.add_argument('--copy')
    parser.add_argument('--add_train')
    parser.set_defaults(retrain=False)

    opt = parser.parse_args()

    with open(opt.config) as f:
        config = yaml.load(f)

    out_dir, logger = utilities.init_logging(opt.log_dir)
    logger.info(opt)
    logger.info(yaml.dump(config))

    print('out dir: ', out_dir)

    if opt.mode == 'train':
        batch_size = config['batch_size']
        img_shape = 2 * [config['spatial_size']] + [3]
        data_shape = [batch_size] + img_shape
        init_shape = [config['init_batches'] * batch_size] + img_shape
        box_factor = config['box_factor']

        data_index = config['data_index']
        batches = get_batches(data_shape,
                              data_index,
Ejemplo n.º 6
0
def main(input_epitopes, input_cleavages, output_frontier, cocktail,
         pareto_steps, verbose, log_file, max_aminoacids, max_epitopes,
         min_alleles, min_proteins, min_avg_prot_conservation,
         min_avg_alle_conservation):
    '''
    Explore the trade-off between the immunogenicity and the cleavage
    likelihood for string-of-beads vaccines. Outputs the Pareto frontier
    of the two objectives.
    '''

    global LOGGER
    LOGGER = utilities.init_logging(verbose=verbose, log_file=log_file)

    # load epitopes
    epitopes = utilities.load_epitopes(input_epitopes)
    LOGGER.info('Loaded %d epitopes', len(epitopes))

    # read cleavage scores
    cleavage_epitopes = set()
    cleavages, spacers = {}, {}
    with open(input_cleavages) as f:
        for row in csv.DictReader(f):
            cleavages[row['from'], row['to']] = float(row['score'])
            spacers[row['from'], row['to']] = row.get('spacer', '')
            cleavage_epitopes.add(row['from'])
            cleavage_epitopes.add(row['to'])
    LOGGER.info('Loaded %d cleavage scores', len(cleavages))

    # compute edge cost
    edge_cost, vertices, vertices_rewards = [], [], []
    vertex_to_epitope = [''] + list(cleavage_epitopes)
    for ep_from in vertex_to_epitope:
        vertices.append(ep_from)
        vertices_rewards.append(0 if ep_from == '' else epitopes[ep_from]['immunogen'])
        edge_cost.append([
            cleavages[ep_from, ep_to] if ep_from != '' and ep_to != '' and ep_from != ep_to else 0.0
            for ep_to in vertex_to_epitope
        ])
    LOGGER.info('Graph has %d vertices', len(vertex_to_epitope))

    # find optimal design
    solver_build_time = time.time()
    solver = TeamOrienteeringIlp(
        num_teams=cocktail, vertex_reward=vertices_rewards, edge_cost=edge_cost,
        type_coverage=[], min_type_coverage=[], min_avg_type_conservation=[],
        max_edge_cost=0, max_vertices=max_epitopes
    )
    solver.build_model()
    reward_cost = solver.explore_edge_cost_vertex_reward_tradeoff(pareto_steps)
    with open(output_frontier, 'w') as f:
        writer = csv.writer(f)
        writer.writerow(('immunogenicity', 'cleavage', 'epitopes', 'spacers'))
        for epitopes_index, immunogen, cleavage in reward_cost:
            vax_epis, vax_spacers = [], []
            for a, b in epitopes_index[0]: # FIXME multiple tours?
                if b != 0:
                    vax_epis.append(vertex_to_epitope[b])
                if a != 0 and b != 0:
                    vax_spacers.append(spacers[vertex_to_epitope[a], vertex_to_epitope[b]])

            writer.writerow((immunogen, cleavage, ';'.join(vax_epis), ';'.join(vax_spacers)))
            f.flush()  # write progress immediately

            LOGGER.info('Immunogenicity: %.3f - Cleavage: %.3f - Epitopes: %s - Spacers: %s',
                        immunogen, cleavage, ', '.join(vax_epis), ', '.join(vax_spacers))