Ejemplo n.º 1
0
def read1DVariableFromDataset( dimStr, varStr, ds, iLOff=0, iROff=0, cl=1):
  # iLOff: left offset
  # iROff: right offset
  # cl   : coarsening level
  if(varStr in ds.variables.keys()):
    vs = ds.variables[varStr]
    dimList = vs.dimensions   # return a list of variable dimensions ('time', 'x', 'y', etc.)
    print(' dimList = {} '.format( dimList ))
    vdim = partialMatchFromList( dimStr, dimList )
    
    try:
      print(' Reading variable {} ... '.format(vdim))
      if(iROff == 0 or (iROff is None) ):
        var = ds.variables[vdim][(0 + iLOff):]
      else:
        var = ds.variables[vdim][(0 + iLOff):-abs(iROff)]
      print(' ... done.')
    except:
      print(' Cannot read the array of variable: {}.'.format(varStr))
      sys.exit(1)

  else:
    print(' Variable {} not in list {}.'.format(varStr, ds.variables.keys()))
    sys.exit(1)

  return var[::cl], np.shape(var[::cl])
Ejemplo n.º 2
0
def read3DVariableFromDataset(varStr, ds, iTOff=0, iLOff=0, iROff=0, cl=1, meanOn=False):
  
  # iLOff: left offset
  # iROff: right offset
  # cl   : coarsening level
  varStr = partialMatchFromList( varStr , ds.variables.keys() )
  print(' Reading variable {} ... '.format(varStr))
  var, dDict = readVariableFromDataset(varStr, ds, cl=1 )
  print(' ... done.')


  iL = 0 + int(iLOff/cl)
  iR = int(abs(iROff/cl))
  iT = 0 + int(iTOff)
  if(iR == 0):
    # Param list (time, z, y, x )
    if(meanOn):
      vo = var[iL:, iL:, iL:]
    else:
      vo = var[iT:, iL:, iL:, iL:]
  else:
    if(meanOn):
      vo = var[iL:-iR, iL:-iR, iL:-iR]
    else:
      vo = var[iT:, iL:-iR, iL:-iR, iL:-iR]

  var = None

  return vo, np.array(vo.shape)
Ejemplo n.º 3
0
def read3dDataFromNetCDF( fname, varStr, cl=1 ):
  '''
  Establish two boolean variables which indicate whether the created variable is an
  independent or dependent variable in function createNetcdfVariable().
  '''
  parameter = True;  variable  = False

  '''
  Create a NETCDF input dataset (ds), and its associated lists of dependent (varList)
  and independent (dimList) variables.
  '''
  ds, varList, paramList = netcdfDataset(fname)
  varStr = partialMatchFromList( varStr , varList )
  print(' Extracting {} from dataset in {} ... '.format( varStr, fname ))
  var, dDict = readVariableFromDataset(varStr, ds, cl )
  print(' {}_dims = {}\n Done!'.format(varStr, var.shape ))

  # Rename the keys in dDict to simplify the future postprocessing
  for dn in dDict.keys():
    idNan = np.isnan(dDict[dn]); dDict[dn][idNan] = 0.
    if( 'time' in dn and 'time' != dn ):
      dDict['time'] = dDict.pop( dn )
    elif( 'x' == dn[0] and 'x' != dn ):
      dDict['x'] = dDict.pop( dn )
    elif( 'y' == dn[0] and 'y' != dn ):
      dDict['y'] = dDict.pop( dn )
    elif( 'z' == dn[0] and 'z' != dn ):
      dDict['z'] = dDict.pop( dn )
    else: pass

  # Append the variable into the dict.
  dDict['v'] = var

  return dDict
Ejemplo n.º 4
0
and independent (dimList) variables. 
'''
ds, varList, paramList = netcdfDataset(filename)
'''
Read cell center coordinates and time.
Create the output independent variables right away and empty memory.
'''
if (meanOn):
    time = np.array([
        0,
    ])
    time_dims = np.shape(time)
else:
    time, time_dims = read1DVariableFromDataset('time', ds, paramList, 0, 0, 1)

uStr = partialMatchFromList('u', varList)
x, x_dims = read1DVariableFromDataset('x', uStr, ds, paramList, 0, 0, cl)
y, y_dims = read1DVariableFromDataset('y', uStr, ds, paramList, 0, 0, cl)
z, z_dims = read1DVariableFromDataset('z', uStr, ds, paramList, 0, 0, cl)

# - - - - velocity components - - - - - - - - - - - -
sa = ''
if (meanOn): sa = 'm'

u, u_dims = read3DVariableFromDataset('u', ds, varList, 0, 0, cl, meanOn)
v, v_dims = read3DVariableFromDataset('v', ds, varList, 0, 0, cl, meanOn)
w, w_dims = read3DVariableFromDataset('w', ds, varList, 0, 0, cl, meanOn)

infoStr = '''
  time_dims = {}
  x_dims = {}