Ejemplo n.º 1
0
def defocus_gett(roo, voltage=300.0, Pixel_size=1.0, Cs=2.0, wgh=0.1, f_start=0.0, f_stop=-1.0, round_off=1.0, nr1=3, nr2=6, parent=None):
	"""
	
		1. Estimate envelope function and baseline noise using constrained simplex method
		   so as to extract CTF imprints from 1D power spectrum
		2. Based one extracted ctf imprints, perform exhaustive defocus searching to get 
		   defocus which matches the extracted CTF imprints 
	"""
	from utilities  import generate_ctf
	#print "CTF params:", voltage, Pixel_size, Cs, wgh, f_start, f_stop, round_off, nr1, nr2, parent
	res     = []
	Res_roo = []
	Res_TE  = []	
	if f_start == 0 : 	i_start = 0
	else: 			i_start = int(Pixel_size*2.*len(roo)*f_start)
	if f_stop <= f_start : 	i_stop  = len(roo)
		
	else: 			
		i_stop  = int(Pixel_size*2.*len(roo)*f_stop)
		if i_stop > len(roo): i_stop  = len(roo)

	#print "f_start, i_start, f_stop, i_stop:", f_start, i_start, f_stop, i_stop
	TE  = defocus_env_baseline_fit(roo, i_start, i_stop, int(nr1), 4)
	Pn1 = defocus_env_baseline_fit(roo, i_start, i_stop, int(nr2), 3)
	Res_roo = []
	Res_TE  = []
	for i in xrange(len(roo)):
		Res_roo.append(roo[i] - Pn1[i])
		Res_TE.append( TE[i]  - Pn1[i])

	defocus = defocus_guess(Res_roo, Res_TE, voltage, Cs, Pixel_size, wgh, i_start, i_stop, 2, round_off)

	nx  = int(len(Res_roo)*2)
	#ctf = ctf_1d(nx, generate_ctf([defocus, Cs, voltage, Pixel_size, 0.0, wgh]))
	ctf = ctf_2(nx, generate_ctf([defocus, Cs, voltage, Pixel_size, 0.0, wgh]))
	if (parent is not None):
		parent.ctf_data=[roo, Res_roo, Res_TE]
		parent.i_start = i_start
		parent.i_stop = i_stop
		from utilities import write_text_file
		write_text_file([roo, Res_roo, Res_TE, ctf], "procpw.txt")
	else:
		from utilities import write_text_file
		write_text_file([roo, Res_roo, Res_TE, ctf], "procpw.txt")
	return defocus
Ejemplo n.º 2
0
def main():
    # open a text file
    dirty_text = read_text_file('alice.txt')

    # clean the text and create list of words
    word_list = scrub_text(dirty_text)

    # loop through the list of words and count the number of occurances of each
    word_counts = tally_words(word_list)

    # number of words to show
    n = 15

    # find the top n most frequent words and their counts
    top_n = find_most_frequent(word_counts, n)

    # write the top n words to a text file
    print(write_text_file('top_n_words.txt', top_n, n))
Ejemplo n.º 3
0
def isac_substack(args):
	from utilities import get_im, write_text_file
	from EMAN2db import db_open_dict
	from e2bdb import makerelpath
	
	# To make the execution exit upon fatal error by ERROR in global_def.py
	global_def.BATCH = True 
	
	# Check error conditions
	subcommand_name = 'isac_substack'
	if not os.path.exists(args.input_isac_class_avgs_path):
		ERROR('Input ISAC class average stack file does not exist. Please check the file path and restart the program.', subcommand_name) # action=1 - fatal error, exit
	if os.path.exists(args.output_directory):
		ERROR('Output directory exists. Please change the name and restart the program.', subcommand_name) # action=1 - fatal error, exit
	
	assert(os.path.exists(args.input_isac_class_avgs_path))
	assert(not os.path.exists(args.output_directory))
	
	# Create output directory
	os.mkdir(args.output_directory)
	
	# Retrieve original particle IDs of member particles listed in ISAC class average stack
	n_img_processed = EMUtil.get_image_count(args.input_isac_class_avgs_path)
	isac_substack_particle_id_list = []
	for i_img in xrange(n_img_processed):
		isac_substack_particle_id_list += get_im(args.input_isac_class_avgs_path, i_img).get_attr('members')
	isac_substack_particle_id_list.sort()
	
	# Save the substack particle id list
	isac_substack_particle_id_list_file_path = os.path.join(args.output_directory, 'isac_substack_particle_id_list.txt')
	write_text_file(isac_substack_particle_id_list, isac_substack_particle_id_list_file_path)
	
	# Open the output BDB dictionary
	assert(args.output_directory != '')
	output_virtual_bdb_stack_real_path = 'bdb:%s#isac_substack' % args.output_directory
	output_virtual_bdb_stack = db_open_dict(output_virtual_bdb_stack_real_path)
	
	# Convert an absolute path to the actual output data to a relative path by eliminating any symbolic links 
	output_virtual_bdb_stack_real_path=os.path.realpath(output_virtual_bdb_stack.path)+"/"
		
	# Open the input BDB dictionary
	input_bdb_stack = db_open_dict(args.input_bdb_stack_path, ro=True) # Read only
	
	# Copy the header from input to output BDB dictionary
	n_img_detected = len(isac_substack_particle_id_list)
	print_progress("Detected %d ISAC validated particles in %s"%(n_img_detected, args.input_isac_class_avgs_path))
	print(" ")
	
	# Loop through all ISAC validated particles
	n_img_processed = 0
	for i_img_detected, isac_substack_particle_id in enumerate(isac_substack_particle_id_list):
		# Print progress
		if i_img_detected % 1000 == 0:
			try:
				print_progress("Progress %5.2f%%: Processing %6dth entry (Particle ID %6d)."%(float(i_img_detected)/n_img_detected*100.0, i_img_detected, isac_substack_particle_id))
				sys.stdout.flush()
			except:
				pass
		
		# Read a particle image header from input bdb stack
		try: 
			img_header = input_bdb_stack.get(isac_substack_particle_id, nodata=1).get_attr_dict() # Need only header information
		except:
			ERROR('Failed to read image header of particle #%d from %s. Skipping this image...' % (isac_substack_particle_id, args.input_bdb_stack_path), subcommand_name, action = 0) # action = 0 - non-fatal, print a warning;
			continue
		
		# Convert an absolute path to the actual input data to a relative path by eliminating any symbolic links 
		try:
			input_bdb_stack_real_path = os.path.realpath(input_bdb_stack.get_data_path(isac_substack_particle_id))
			# Conver the path to OS specific format
			if os.name == 'nt':
				output_virtual_bdb_stack_real_path = output_virtual_bdb_stack_real_path.replace("\\", '/')
				input_bdb_stack_real_path = input_bdb_stack_real_path.replace('\\', '/')
			# Takes a pair of paths /a/b/c/d and /a/b/e/f/g and returns a relative path to b from a, ../../e/f/g
			common_relative_path = makerelpath(output_virtual_bdb_stack_real_path, input_bdb_stack_real_path)
		except:
			ERROR('Failure to find common relative data path for particle image #%d. Skipping this image...' % (isac_substack_particle_id), subcommand_name, action = 0) # action = 0 - non-fatal, print a warning;
			continue
		assert(img_header["data_path"] != None)
		
		# Update the image header for output
		img_header["data_path"]    = common_relative_path
		img_header["data_n"]       = isac_substack_particle_id
		img_header["data_source"]  = args.input_bdb_stack_path
		
		# Register the image header to output virtual bdb stack
		output_virtual_bdb_stack[n_img_processed] = img_header
		
		# Increment process image counts
		n_img_processed += 1
	
	# Close input and output bdb stacks
	output_virtual_bdb_stack.close()
	input_bdb_stack.close()

	# Print summary of processing
	print(" ")
	print_progress("Summary of processing...")
	print_progress("Detected  : %6d"%(n_img_detected))
	print_progress("Processed : %6d"%(n_img_processed))
	print(" ")
Ejemplo n.º 4
0
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
#
# ========================================================================================
# Imports
# ========================================================================================
# Python Standard Libraries
from __future__ import print_function
import sys
import os
import argparse
from utilities import get_im, write_text_file

# SPHIRE/EMAN2 Libraries
import	global_def
from	global_def 	import *

#=========================================================================================
input_isac_class_avgs_path = sys.argv[1]  # only command line argument is saved class averages file
# Retrieve original particle IDs of member particles listed in ISAC class average stack
n_img_processed = EMUtil.get_image_count(input_isac_class_avgs_path)
isac_substack_particle_id_list = []
for i_img in xrange(n_img_processed):
	isac_substack_particle_id_list += get_im(input_isac_class_avgs_path, i_img).get_attr('members')
isac_substack_particle_id_list.sort()
	
# Save the substack particle id list
isac_substack_particle_id_list_file_path = 'isac_substack_particle_id_list.txt'
write_text_file(isac_substack_particle_id_list, isac_substack_particle_id_list_file_path)

Ejemplo n.º 5
0
def main():
	from utilities import get_input_from_string
	progname = os.path.basename(sys.argv[0])
	usage = progname + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables"
	parser = OptionParser(usage,version=SPARXVERSION)
	parser.add_option("--radius",       type="int",              default=-1,          help=" particle radius for alignment")
	parser.add_option("--xr",           type="string"      ,     default="2 1",       help="range for translation search in x direction, search is +/xr (default 2,1)")
	parser.add_option("--yr",           type="string"      ,     default="-1",        help="range for translation search in y direction, search is +/yr (default = same as xr)")
	parser.add_option("--ts",           type="string"      ,     default="1 0.5",     help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)")
	parser.add_option("--thld_err",     type="float",            default=0.75,        help="threshld of pixel error (default = 0.75)")
	parser.add_option("--num_ali",      type="int",              default=5,           help="number of alignments performed for stability (default = 5)")
	parser.add_option("--maxit",        type="int",              default=30,          help="number of iterations for each xr (default = 30)")
	parser.add_option("--fl",           type="float"       ,     default=0.3,         help="cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)")
	parser.add_option("--aa",           type="float"       ,     default=0.2,         help="fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)")
	parser.add_option("--CTF",          action="store_true",     default=False,       help="Use CTF correction during the alignment ")
	parser.add_option("--verbose",      action="store_true",     default=False,       help="print individual pixel error (default = False)")
	parser.add_option("--stables",		action="store_true",	 default=False,	      help="output the stable particles number in file (default = False)")
	parser.add_option("--method",		type="string"      ,	 default=" ",	      help="SHC (standard method is default when flag is ommitted)")
	(options, args) = parser.parse_args()
	if len(args) != 1 and len(args) != 2:
    		print "usage: " + usage
    		print "Please run '" + progname + " -h' for detailed options"
	else:
		if global_def.CACHE_DISABLE:
			from utilities import disable_bdb_cache
			disable_bdb_cache()

		from applications   import within_group_refinement, ali2d_ras
		from pixel_error    import multi_align_stability
		from utilities      import write_text_file, write_text_row

		global_def.BATCH = True

		xrng        = get_input_from_string(options.xr)
		if  options.yr == "-1":  yrng = xrng
		else          :  yrng = get_input_from_string(options.yr)
		step        = get_input_from_string(options.ts)

		class_data = EMData.read_images(args[0])

		nx = class_data[0].get_xsize()
		ou = options.radius
		num_ali = options.num_ali
		if ou == -1: ou = nx/2-2
		from utilities import model_circle, get_params2D, set_params2D
		mask = model_circle(ou, nx, nx)

		if options.CTF :
			from filter import filt_ctf
			for im in xrange(len(class_data)):
				#  Flip phases
				class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1)
		for im in class_data:
			im.set_attr("previousmax", -1.0e10)
			try:
				t = im.get_attr("xform.align2d") # if they are there, no need to set them!
			except:
				try:
					t = im.get_attr("xform.projection")
					d = t.get_params("spider")
					set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0])
				except:
					set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0])
		all_ali_params = []

		for ii in xrange(num_ali):
			ali_params = []
			if options.verbose:
				ALPHA = []
				SX = []
				SY = []
				MIRROR = []
			if( xrng[0] == 0.0 and yrng[0] == 0.0 ):
				avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = ou, rs = 1, step = 1.0, dst = 90.0, \
						maxit = options.maxit, check_mirror = True, FH=options.fl, FF=options.aa)
			else:
				avet = within_group_refinement(class_data, mask, True, 1, ou, 1, xrng, yrng, step, 90.0, \
						maxit = options.maxit, FH=options.fl, FF=options.aa, method = options.method)
				from utilities import info
				#print "  avet  ",info(avet)
			for im in class_data:
				alpha, sx, sy, mirror, scale = get_params2D(im)
				ali_params.extend([alpha, sx, sy, mirror])
				if options.verbose:
					ALPHA.append(alpha)
					SX.append(sx)
					SY.append(sy)
					MIRROR.append(mirror)
			all_ali_params.append(ali_params)
			if options.verbose:
				write_text_file([ALPHA, SX, SY, MIRROR], "ali_params_run_%d"%ii)
		"""
		avet = class_data[0]
		from utilities import read_text_file
		all_ali_params = []
		for ii in xrange(5):
			temp = read_text_file( "ali_params_run_%d"%ii,-1)
			uuu = []
			for k in xrange(len(temp[0])):
				uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]])
			all_ali_params.append(uuu)


		"""

		stable_set, mir_stab_rate, pix_err = multi_align_stability(all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose, 2*ou+1)
		print "%4s %20s %20s %20s %30s %6.2f"%("", "Size of set", "Size of stable set", "Mirror stab rate", "Pixel error prior to pruning the set above threshold of",options.thld_err)
		print "Average stat: %10d %20d %20.2f   %15.2f"%( len(class_data), len(stable_set), mir_stab_rate, pix_err)
		if( len(stable_set) > 0):
			if options.stables:
				stab_mem = [[0,0.0,0] for j in xrange(len(stable_set))]
				for j in xrange(len(stable_set)): stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j]
				write_text_row(stab_mem, "stable_particles.txt")

			stable_set_id = []
			particle_pixerr = []
			for s in stable_set:
				stable_set_id.append(s[1])
				particle_pixerr.append(s[0])
			from fundamentals import rot_shift2D
			avet.to_zero()
			l = -1
			print "average parameters:  angle, x-shift, y-shift, mirror"
			for j in stable_set_id:
				l += 1
				print " %4d  %4d  %12.2f %12.2f %12.2f        %1d"%(l,j, stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], int(stable_set[l][2][3]))
				avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] )
			avet /= (l+1)
			avet.set_attr('members', stable_set_id)
			avet.set_attr('pix_err', pix_err)
			avet.set_attr('pixerr', particle_pixerr)
			avet.write_image(args[1])



		global_def.BATCH = False
Ejemplo n.º 6
0
def main():
	from logger import Logger, BaseLogger_Files
        arglist = []
        i = 0
        while( i < len(sys.argv) ):
            if sys.argv[i]=='-p4pg':
                i = i+2
            elif sys.argv[i]=='-p4wd':
                i = i+2
            else:
                arglist.append( sys.argv[i] )
                i = i+1
	progname = os.path.basename(arglist[0])
	usage = progname + " stack  outdir  <mask> --focus=3Dmask --radius=outer_radius --delta=angular_step" +\
	"--an=angular_neighborhood --maxit=max_iter  --CTF --sym=c1 --function=user_function --independent=indenpendent_runs  --number_of_images_per_group=number_of_images_per_group  --low_pass_frequency=.25  --seed=random_seed"
	parser = OptionParser(usage,version=SPARXVERSION)
	parser.add_option("--focus",                         type   ="string",        default ='',                    help="bineary 3D mask for focused clustering ")
	parser.add_option("--ir",                            type   = "int",          default =1, 	                  help="inner radius for rotational correlation > 0 (set to 1)")
	parser.add_option("--radius",                        type   = "int",          default =-1,	                  help="particle radius in pixel for rotational correlation <nx-1 (set to the radius of the particle)")
	parser.add_option("--maxit",	                     type   = "int",          default =25, 	                  help="maximum number of iteration")
	parser.add_option("--rs",                            type   = "int",          default =1,	                  help="step between rings in rotational correlation >0 (set to 1)" ) 
	parser.add_option("--xr",                            type   ="string",        default ='1',                   help="range for translation search in x direction, search is +/-xr ")
	parser.add_option("--yr",                            type   ="string",        default ='-1',	              help="range for translation search in y direction, search is +/-yr (default = same as xr)")
	parser.add_option("--ts",                            type   ="string",        default ='0.25',                help="step size of the translation search in both directions direction, search is -xr, -xr+ts, 0, xr-ts, xr ")
	parser.add_option("--delta",                         type   ="string",        default ='2',                   help="angular step of reference projections")
	parser.add_option("--an",                            type   ="string",        default ='-1',	              help="angular neighborhood for local searches")
	parser.add_option("--center",                        type   ="int",           default =0,	                  help="0 - if you do not want the volume to be centered, 1 - center the volume using cog (default=0)")
	parser.add_option("--nassign",                       type   ="int",           default =1, 	                  help="number of reassignment iterations performed for each angular step (set to 3) ")
	parser.add_option("--nrefine",                       type   ="int",           default =0, 	                  help="number of alignment iterations performed for each angular step (set to 0)")
	parser.add_option("--CTF",                           action ="store_true",    default =False,                 help="do CTF correction during clustring")
	parser.add_option("--stoprnct",                      type   ="float",         default =3.0,                   help="Minimum percentage of assignment change to stop the program")
	parser.add_option("--sym",                           type   ="string",        default ='c1',                  help="symmetry of the structure ")
	parser.add_option("--function",                      type   ="string",        default ='do_volume_mrk05',     help="name of the reference preparation function")
	parser.add_option("--independent",                   type   ="int",           default = 3,                    help="number of independent run")
	parser.add_option("--number_of_images_per_group",    type   ="int",           default =1000,                  help="number of groups")
	parser.add_option("--low_pass_filter",               type   ="float",         default =-1.0,                  help="absolute frequency of low-pass filter for 3d sorting on the original image size" )
	parser.add_option("--nxinit",                        type   ="int",           default =64,                    help="initial image size for sorting" )
	parser.add_option("--unaccounted",                   action ="store_true",    default =False,                 help="reconstruct the unaccounted images")
	parser.add_option("--seed",                          type   ="int",           default =-1,                    help="random seed for create initial random assignment for EQ Kmeans")
	parser.add_option("--smallest_group",                type   ="int",           default =500,                   help="minimum members for identified group")
	parser.add_option("--sausage",                       action ="store_true",    default =False,                 help="way of filter volume")
	parser.add_option("--chunkdir",                      type   ="string",        default ='',                    help="chunkdir for computing margin of error")
	parser.add_option("--PWadjustment",                  type   ="string",        default ='',                    help="1-D power spectrum of PDB file used for EM volume power spectrum correction")
	parser.add_option("--protein_shape",                 type   ="string",        default ='g',                   help="protein shape. It defines protein preferred orientation angles. Currently it has g and f two types ")
	parser.add_option("--upscale",                       type   ="float",         default =0.5,                   help=" scaling parameter to adjust the power spectrum of EM volumes")
	parser.add_option("--wn",                            type   ="int",           default =0,                     help="optimal window size for data processing")
	parser.add_option("--interpolation",                 type   ="string",        default ="4nn",                 help="3-d reconstruction interpolation method, two options trl and 4nn")
	(options, args) = parser.parse_args(arglist[1:])
	if len(args) < 1  or len(args) > 4:
    		print "usage: " + usage
    		print "Please run '" + progname + " -h' for detailed options"
	else:

		if len(args)>2:
			mask_file = args[2]
		else:
			mask_file = None

		orgstack                        =args[0]
		masterdir                       =args[1]
		global_def.BATCH = True
		#---initialize MPI related variables
		from mpi import mpi_init, mpi_comm_size, MPI_COMM_WORLD, mpi_comm_rank,mpi_barrier,mpi_bcast, mpi_bcast, MPI_INT,MPI_CHAR
		sys.argv = mpi_init(len(sys.argv),sys.argv)
		nproc    = mpi_comm_size(MPI_COMM_WORLD)
		myid     = mpi_comm_rank(MPI_COMM_WORLD)
		mpi_comm = MPI_COMM_WORLD
		main_node= 0
		# import some utilities
		from utilities import get_im,bcast_number_to_all,cmdexecute,write_text_file,read_text_file,wrap_mpi_bcast, get_params_proj, write_text_row
		from applications import recons3d_n_MPI, mref_ali3d_MPI, Kmref_ali3d_MPI
		from statistics import k_means_match_clusters_asg_new,k_means_stab_bbenum
		from applications import mref_ali3d_EQ_Kmeans, ali3d_mref_Kmeans_MPI  
		# Create the main log file
		from logger import Logger,BaseLogger_Files
		if myid ==main_node:
			log_main=Logger(BaseLogger_Files())
			log_main.prefix = masterdir+"/"
		else:
			log_main =None
		#--- fill input parameters into dictionary named after Constants
		Constants		                         ={}
		Constants["stack"]                       = args[0]
		Constants["masterdir"]                   = masterdir
		Constants["mask3D"]                      = mask_file
		Constants["focus3Dmask"]                 = options.focus
		Constants["indep_runs"]                  = options.independent
		Constants["stoprnct"]                    = options.stoprnct
		Constants["number_of_images_per_group"]  = options.number_of_images_per_group
		Constants["CTF"]                         = options.CTF
		Constants["maxit"]                       = options.maxit
		Constants["ir"]                          = options.ir 
		Constants["radius"]                      = options.radius 
		Constants["nassign"]                     = options.nassign
		Constants["rs"]                          = options.rs 
		Constants["xr"]                          = options.xr
		Constants["yr"]                          = options.yr
		Constants["ts"]                          = options.ts
		Constants["delta"]               		 = options.delta
		Constants["an"]                  		 = options.an
		Constants["sym"]                 		 = options.sym
		Constants["center"]              		 = options.center
		Constants["nrefine"]             		 = options.nrefine
		#Constants["fourvar"]            		 = options.fourvar 
		Constants["user_func"]           		 = options.function
		Constants["low_pass_filter"]     		 = options.low_pass_filter # enforced low_pass_filter
		#Constants["debug"]              		 = options.debug
		Constants["main_log_prefix"]     		 = args[1]
		#Constants["importali3d"]        		 = options.importali3d
		Constants["myid"]	             		 = myid
		Constants["main_node"]           		 = main_node
		Constants["nproc"]               		 = nproc
		Constants["log_main"]            		 = log_main
		Constants["nxinit"]              		 = options.nxinit
		Constants["unaccounted"]         		 = options.unaccounted
		Constants["seed"]                		 = options.seed
		Constants["smallest_group"]      		 = options.smallest_group
		Constants["sausage"]             		 = options.sausage
		Constants["chunkdir"]            		 = options.chunkdir
		Constants["PWadjustment"]        		 = options.PWadjustment
		Constants["upscale"]             		 = options.upscale
		Constants["wn"]                  		 = options.wn
		Constants["3d-interpolation"]    		 = options.interpolation
		Constants["protein_shape"]    		     = options.protein_shape 
		# -----------------------------------------------------
		#
		# Create and initialize Tracker dictionary with input options
		Tracker = 			    		{}
		Tracker["constants"]       = Constants
		Tracker["maxit"]           = Tracker["constants"]["maxit"]
		Tracker["radius"]          = Tracker["constants"]["radius"]
		#Tracker["xr"]             = ""
		#Tracker["yr"]             = "-1"  # Do not change!
		#Tracker["ts"]             = 1
		#Tracker["an"]             = "-1"
		#Tracker["delta"]          = "2.0"
		#Tracker["zoom"]           = True
		#Tracker["nsoft"]          = 0
		#Tracker["local"]          = False
		#Tracker["PWadjustment"]   = Tracker["constants"]["PWadjustment"]
		Tracker["upscale"]         = Tracker["constants"]["upscale"]
		#Tracker["upscale"]        = 0.5
		Tracker["applyctf"]        = False  #  Should the data be premultiplied by the CTF.  Set to False for local continuous.
		#Tracker["refvol"]         = None
		Tracker["nxinit"]          = Tracker["constants"]["nxinit"]
		#Tracker["nxstep"]         = 32
		Tracker["icurrentres"]     = -1
		#Tracker["ireachedres"]    = -1
		#Tracker["lowpass"]        = 0.4
		#Tracker["falloff"]        = 0.2
		#Tracker["inires"]         = options.inires  # Now in A, convert to absolute before using
		Tracker["fuse_freq"]       = 50  # Now in A, convert to absolute before using
		#Tracker["delpreviousmax"] = False
		#Tracker["anger"]          = -1.0
		#Tracker["shifter"]        = -1.0
		#Tracker["saturatecrit"]   = 0.95
		#Tracker["pixercutoff"]    = 2.0
		#Tracker["directory"]      = ""
		#Tracker["previousoutputdir"] = ""
		#Tracker["eliminated-outliers"] = False
		#Tracker["mainiteration"]  = 0
		#Tracker["movedback"]      = False
		#Tracker["state"]          = Tracker["constants"]["states"][0] 
		#Tracker["global_resolution"] =0.0
		Tracker["orgstack"]        = orgstack
		#--------------------------------------------------------------------
		# import from utilities
		from utilities import sample_down_1D_curve,get_initial_ID,remove_small_groups,print_upper_triangular_matrix,print_a_line_with_timestamp
		from utilities import print_dict,get_resolution_mrk01,partition_to_groups,partition_independent_runs,get_outliers
		from utilities import merge_groups, save_alist, margin_of_error, get_margin_of_error, do_two_way_comparison, select_two_runs, get_ali3d_params
		from utilities import counting_projections, unload_dict, load_dict, get_stat_proj, create_random_list, get_number_of_groups, recons_mref
		from utilities import apply_low_pass_filter, get_groups_from_partition, get_number_of_groups, get_complementary_elements_total, update_full_dict
		from utilities import count_chunk_members, set_filter_parameters_from_adjusted_fsc, adjust_fsc_down, get_two_chunks_from_stack
		####------------------------------------------------------------------
		#
		# Get the pixel size; if none, set to 1.0, and the original image size
		from utilities import get_shrink_data_huang
		if(myid == main_node):
			line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>"
			print(line+"Initialization of 3-D sorting")
			a = get_im(orgstack)
			nnxo = a.get_xsize()
			if( Tracker["nxinit"] > nnxo ):
				ERROR("Image size less than minimum permitted $d"%Tracker["nxinit"],"sxsort3d.py",1)
				nnxo = -1
			else:
				if Tracker["constants"]["CTF"]:
					i = a.get_attr('ctf')
					pixel_size = i.apix
					fq = pixel_size/Tracker["fuse_freq"]
				else:
					pixel_size = 1.0
					#  No pixel size, fusing computed as 5 Fourier pixels
					fq = 5.0/nnxo
					del a
		else:
			nnxo = 0
			fq = 0.0
			pixel_size = 1.0
		nnxo = bcast_number_to_all(nnxo, source_node = main_node)
		if( nnxo < 0 ):
			mpi_finalize()
			exit()
		pixel_size = bcast_number_to_all(pixel_size, source_node = main_node)
		fq         = bcast_number_to_all(fq, source_node = main_node)
		if Tracker["constants"]["wn"]==0:
			Tracker["constants"]["nnxo"]          = nnxo
		else:
			Tracker["constants"]["nnxo"]          = Tracker["constants"]["wn"]
			nnxo                                  = Tracker["constants"]["nnxo"]
		Tracker["constants"]["pixel_size"]        = pixel_size
		Tracker["fuse_freq"]                      = fq
		del fq, nnxo, pixel_size
		if(Tracker["constants"]["radius"] < 1):
			Tracker["constants"]["radius"]  = Tracker["constants"]["nnxo"]//2-2
		elif((2*Tracker["constants"]["radius"] +2) > Tracker["constants"]["nnxo"]):
			ERROR("Particle radius set too large!","sxsort3d.py",1,myid)
####-----------------------------------------------------------------------------------------
		# Master directory
		if myid == main_node:
			if masterdir =="":
				timestring = strftime("_%d_%b_%Y_%H_%M_%S", localtime())
				masterdir ="master_sort3d"+timestring
			li =len(masterdir)
			cmd="{} {}".format("mkdir", masterdir)
			os.system(cmd)
		else:
			li=0
		li = mpi_bcast(li,1,MPI_INT,main_node,MPI_COMM_WORLD)[0]
		if li>0:
			masterdir = mpi_bcast(masterdir,li,MPI_CHAR,main_node,MPI_COMM_WORLD)
			import string
			masterdir = string.join(masterdir,"")
		if myid ==main_node:
			print_dict(Tracker["constants"],"Permanent settings of 3-D sorting program")
		######### create a vstack from input stack to the local stack in masterdir
		# stack name set to default
		Tracker["constants"]["stack"]       = "bdb:"+masterdir+"/rdata"
		Tracker["constants"]["ali3d"]       = os.path.join(masterdir, "ali3d_init.txt")
		Tracker["constants"]["ctf_params"]  = os.path.join(masterdir, "ctf_params.txt")
		Tracker["constants"]["partstack"]   = Tracker["constants"]["ali3d"]  # also serves for refinement
		if myid == main_node:
			total_stack = EMUtil.get_image_count(Tracker["orgstack"])
		else:
			total_stack = 0
		total_stack = bcast_number_to_all(total_stack, source_node = main_node)
		mpi_barrier(MPI_COMM_WORLD)
		from time import sleep
		while not os.path.exists(masterdir):
				print  "Node ",myid,"  waiting..."
				sleep(5)
		mpi_barrier(MPI_COMM_WORLD)
		if myid == main_node:
			log_main.add("Sphire sort3d ")
			log_main.add("the sort3d master directory is "+masterdir)
		#####
		###----------------------------------------------------------------------------------
		# Initial data analysis and handle two chunk files
		from random import shuffle
		# Compute the resolution 
		#### make chunkdir dictionary for computing margin of error
		import user_functions
		user_func  = user_functions.factory[Tracker["constants"]["user_func"]]
		chunk_dict = {}
		chunk_list = []
		if myid == main_node:
			chunk_one = read_text_file(os.path.join(Tracker["constants"]["chunkdir"],"chunk0.txt"))
			chunk_two = read_text_file(os.path.join(Tracker["constants"]["chunkdir"],"chunk1.txt"))
		else:
			chunk_one = 0
			chunk_two = 0
		chunk_one = wrap_mpi_bcast(chunk_one, main_node)
		chunk_two = wrap_mpi_bcast(chunk_two, main_node)
		mpi_barrier(MPI_COMM_WORLD)
		######################## Read/write bdb: data on main node ############################
	   	if myid==main_node:
			if(orgstack[:4] == "bdb:"):	cmd = "{} {} {}".format("e2bdb.py", orgstack,"--makevstack="+Tracker["constants"]["stack"])
			else:  cmd = "{} {} {}".format("sxcpy.py", orgstack, Tracker["constants"]["stack"])
	   		cmdexecute(cmd)
			cmd = "{} {} {}".format("sxheader.py  --params=xform.projection", "--export="+Tracker["constants"]["ali3d"],orgstack)
			cmdexecute(cmd)
			cmd = "{} {} {}".format("sxheader.py  --params=ctf", "--export="+Tracker["constants"]["ctf_params"],orgstack)
			cmdexecute(cmd)
		mpi_barrier(MPI_COMM_WORLD)	   		   	
		########-----------------------------------------------------------------------------
		Tracker["total_stack"]              = total_stack
		Tracker["constants"]["total_stack"] = total_stack
		Tracker["shrinkage"]                = float(Tracker["nxinit"])/Tracker["constants"]["nnxo"]
		Tracker["radius"]                   = Tracker["constants"]["radius"]*Tracker["shrinkage"]
		if Tracker["constants"]["mask3D"]:
			Tracker["mask3D"] = os.path.join(masterdir,"smask.hdf")
		else:
			Tracker["mask3D"]  = None
		if Tracker["constants"]["focus3Dmask"]:
			Tracker["focus3D"] = os.path.join(masterdir,"sfocus.hdf")
		else:
			Tracker["focus3D"] = None
		if myid == main_node:
			if Tracker["constants"]["mask3D"]:
				mask_3D = get_shrink_3dmask(Tracker["nxinit"],Tracker["constants"]["mask3D"])
				mask_3D.write_image(Tracker["mask3D"])
			if Tracker["constants"]["focus3Dmask"]:
				mask_3D = get_shrink_3dmask(Tracker["nxinit"],Tracker["constants"]["focus3Dmask"])
				st = Util.infomask(mask_3D, None, True)
				if( st[0] == 0.0 ):  ERROR("sxrsort3d","incorrect focused mask, after binarize all values zero",1)
				mask_3D.write_image(Tracker["focus3D"])
				del mask_3D
		if Tracker["constants"]["PWadjustment"] !='':
			PW_dict              = {}
			nxinit_pwsp          = sample_down_1D_curve(Tracker["constants"]["nxinit"],Tracker["constants"]["nnxo"],Tracker["constants"]["PWadjustment"])
			Tracker["nxinit_PW"] = os.path.join(masterdir,"spwp.txt")
			if myid == main_node:  write_text_file(nxinit_pwsp,Tracker["nxinit_PW"])
			PW_dict[Tracker["constants"]["nnxo"]]   = Tracker["constants"]["PWadjustment"]
			PW_dict[Tracker["constants"]["nxinit"]] = Tracker["nxinit_PW"]
			Tracker["PW_dict"]                      = PW_dict
		mpi_barrier(MPI_COMM_WORLD)
		#-----------------------From two chunks to FSC, and low pass filter-----------------------------------------###
		for element in chunk_one: chunk_dict[element] = 0
		for element in chunk_two: chunk_dict[element] = 1
		chunk_list =[chunk_one, chunk_two]
		Tracker["chunk_dict"] = chunk_dict
		Tracker["P_chunk0"]   = len(chunk_one)/float(total_stack)
		Tracker["P_chunk1"]   = len(chunk_two)/float(total_stack)
		### create two volumes to estimate resolution
		if myid == main_node:
			for index in xrange(2): write_text_file(chunk_list[index],os.path.join(masterdir,"chunk%01d.txt"%index))
		mpi_barrier(MPI_COMM_WORLD)
		vols = []
		for index in xrange(2):
			data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nxinit"], os.path.join(masterdir,"chunk%01d.txt"%index), Tracker["constants"]["partstack"],myid,main_node,nproc,preshift=True)
			vol             = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data,symmetry=Tracker["constants"]["sym"], finfo=None)
			if myid == main_node:
				vol.write_image(os.path.join(masterdir, "vol%d.hdf"%index))
			vols.append(vol)
			mpi_barrier(MPI_COMM_WORLD)
		if myid ==main_node:
			low_pass, falloff,currentres = get_resolution_mrk01(vols,Tracker["constants"]["radius"],Tracker["constants"]["nxinit"],masterdir,Tracker["mask3D"])
			if low_pass >Tracker["constants"]["low_pass_filter"]: low_pass= Tracker["constants"]["low_pass_filter"]
		else:
			low_pass    =0.0
			falloff     =0.0
			currentres  =0.0
		bcast_number_to_all(currentres,source_node = main_node)
		bcast_number_to_all(low_pass,source_node   = main_node)
		bcast_number_to_all(falloff,source_node    = main_node)
		Tracker["currentres"]                      = currentres
		Tracker["falloff"]                         = falloff
		if Tracker["constants"]["low_pass_filter"] ==-1.0:
			Tracker["low_pass_filter"] = min(.45,low_pass/Tracker["shrinkage"]) # no better than .45
		else:
			Tracker["low_pass_filter"] = min(.45,Tracker["constants"]["low_pass_filter"]/Tracker["shrinkage"])
		Tracker["lowpass"]             = Tracker["low_pass_filter"]
		Tracker["falloff"]             =.1
		Tracker["global_fsc"]          = os.path.join(masterdir, "fsc.txt")
		############################################################################################
		if myid == main_node:
			log_main.add("The command-line inputs are as following:")
			log_main.add("**********************************************************")
		for a in sys.argv:
			if myid == main_node:log_main.add(a)
		if myid == main_node:
			log_main.add("number of cpus used in this run is %d"%Tracker["constants"]["nproc"])
			log_main.add("**********************************************************")
		from filter import filt_tanl
		### START 3-D sorting
		if myid ==main_node:
			log_main.add("----------3-D sorting  program------- ")
			log_main.add("current resolution %6.3f for images of original size in terms of absolute frequency"%Tracker["currentres"])
			log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["currentres"]/Tracker["shrinkage"]))
			log_main.add("the user provided enforced low_pass_filter is %f"%Tracker["constants"]["low_pass_filter"])
			#log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["constants"]["low_pass_filter"]))
			for index in xrange(2):
				filt_tanl(get_im(os.path.join(masterdir,"vol%01d.hdf"%index)), Tracker["low_pass_filter"],Tracker["falloff"]).write_image(os.path.join(masterdir, "volf%01d.hdf"%index))
		mpi_barrier(MPI_COMM_WORLD)
		from utilities import get_input_from_string
		delta       = get_input_from_string(Tracker["constants"]["delta"])
		delta       = delta[0]
		from utilities import even_angles
		n_angles    = even_angles(delta, 0, 180)
		this_ali3d  = Tracker["constants"]["ali3d"]
		sampled     = get_stat_proj(Tracker,delta,this_ali3d)
		if myid ==main_node:
			nc = 0
			for a in sampled:
				if len(sampled[a])>0:
					nc += 1
			log_main.add("total sampled direction %10d  at angle step %6.3f"%(len(n_angles), delta)) 
			log_main.add("captured sampled directions %10d percentage covered by data  %6.3f"%(nc,float(nc)/len(n_angles)*100))
		number_of_images_per_group = Tracker["constants"]["number_of_images_per_group"]
		if myid ==main_node: log_main.add("user provided number_of_images_per_group %d"%number_of_images_per_group)
		Tracker["number_of_images_per_group"] = number_of_images_per_group
		number_of_groups = get_number_of_groups(total_stack,number_of_images_per_group)
		Tracker["number_of_groups"] =  number_of_groups
		generation     =0
		partition_dict ={}
		full_dict      ={}
		workdir =os.path.join(masterdir,"generation%03d"%generation)
		Tracker["this_dir"] = workdir
		if myid ==main_node:
			log_main.add("---- generation         %5d"%generation)
			log_main.add("number of images per group is set as %d"%number_of_images_per_group)
			log_main.add("the initial number of groups is  %10d "%number_of_groups)
			cmd="{} {}".format("mkdir",workdir)
			os.system(cmd)
		mpi_barrier(MPI_COMM_WORLD)
		list_to_be_processed = range(Tracker["constants"]["total_stack"])
		Tracker["this_data_list"] = list_to_be_processed
		create_random_list(Tracker)
		#################################
		full_dict ={}
		for iptl in xrange(Tracker["constants"]["total_stack"]):
			 full_dict[iptl]    = iptl
		Tracker["full_ID_dict"] = full_dict
		################################# 	
		for indep_run in xrange(Tracker["constants"]["indep_runs"]):
			Tracker["this_particle_list"] = Tracker["this_indep_list"][indep_run]
			ref_vol =  recons_mref(Tracker)
			if myid == main_node: log_main.add("independent run  %10d"%indep_run)
			mpi_barrier(MPI_COMM_WORLD)
			Tracker["this_data_list"]          = list_to_be_processed
			Tracker["total_stack"]             = len(Tracker["this_data_list"])
			Tracker["this_particle_text_file"] = os.path.join(workdir,"independent_list_%03d.txt"%indep_run) # for get_shrink_data
			if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_particle_text_file"])
			mpi_barrier(MPI_COMM_WORLD)
			outdir  = os.path.join(workdir, "EQ_Kmeans%03d"%indep_run)
			ref_vol = apply_low_pass_filter(ref_vol,Tracker)
			mref_ali3d_EQ_Kmeans(ref_vol, outdir, Tracker["this_particle_text_file"], Tracker)
			partition_dict[indep_run]=Tracker["this_partition"]
		Tracker["partition_dict"]    = partition_dict
		Tracker["total_stack"]       = len(Tracker["this_data_list"])
		Tracker["this_total_stack"]  = Tracker["total_stack"]
		###############################
		do_two_way_comparison(Tracker)
		###############################
		ref_vol_list = []
		from time import sleep
		number_of_ref_class = []
		for igrp in xrange(len(Tracker["two_way_stable_member"])):
			Tracker["this_data_list"]      = Tracker["two_way_stable_member"][igrp]
			Tracker["this_data_list_file"] = os.path.join(workdir,"stable_class%d.txt"%igrp)
			if myid == main_node:
				write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"])
			data,old_shifts = get_shrink_data_huang(Tracker,Tracker["nxinit"], Tracker["this_data_list_file"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift = True)
			volref          = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"], finfo = None)
			ref_vol_list.append(volref)
			number_of_ref_class.append(len(Tracker["this_data_list"]))
			if myid == main_node:
				log_main.add("group  %d  members %d "%(igrp,len(Tracker["this_data_list"])))
		Tracker["number_of_ref_class"] = number_of_ref_class
		nx_of_image = ref_vol_list[0].get_xsize()
		if Tracker["constants"]["PWadjustment"]:
			Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image]
		else:
			Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"]	 # no PW adjustment
		if myid == main_node:
			for iref in xrange(len(ref_vol_list)):
				refdata    = [None]*4
				refdata[0] = ref_vol_list[iref]
				refdata[1] = Tracker
				refdata[2] = Tracker["constants"]["myid"]
				refdata[3] = Tracker["constants"]["nproc"]
				volref     = user_func(refdata)
				volref.write_image(os.path.join(workdir,"volf_stable.hdf"),iref)
		mpi_barrier(MPI_COMM_WORLD)
		Tracker["this_data_list"]           = Tracker["this_accounted_list"]
		outdir                              = os.path.join(workdir,"Kmref")  
		empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI(ref_vol_list,outdir,Tracker["this_accounted_text"],Tracker)
		Tracker["this_unaccounted_list"]    = get_complementary_elements(list_to_be_processed,final_list)
		if myid == main_node:
			log_main.add("the number of particles not processed is %d"%len(Tracker["this_unaccounted_list"]))
			write_text_file(Tracker["this_unaccounted_list"],Tracker["this_unaccounted_text"])
		update_full_dict(Tracker["this_unaccounted_list"], Tracker)
		#######################################
		number_of_groups    = len(res_groups)
		vol_list            = []
		number_of_ref_class = []
		for igrp in xrange(number_of_groups):
			data,old_shifts = get_shrink_data_huang(Tracker, Tracker["constants"]["nnxo"], os.path.join(outdir,"Class%d.txt"%igrp), Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True)
			volref          = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"], finfo=None)
			vol_list.append(volref)

			if( myid == main_node ):  npergroup = len(read_text_file(os.path.join(outdir,"Class%d.txt"%igrp)))
			else:  npergroup = 0
			npergroup = bcast_number_to_all(npergroup, main_node )
			number_of_ref_class.append(npergroup)

		Tracker["number_of_ref_class"] = number_of_ref_class
		
		mpi_barrier(MPI_COMM_WORLD)
		nx_of_image = vol_list[0].get_xsize()
		if Tracker["constants"]["PWadjustment"]:
			Tracker["PWadjustment"]=Tracker["PW_dict"][nx_of_image]
		else:
			Tracker["PWadjustment"]=Tracker["constants"]["PWadjustment"]	

		if myid == main_node:
			for ivol in xrange(len(vol_list)):
				refdata     =[None]*4
				refdata[0] = vol_list[ivol]
				refdata[1] = Tracker
				refdata[2] = Tracker["constants"]["myid"]
				refdata[3] = Tracker["constants"]["nproc"] 
				volref = user_func(refdata)
				volref.write_image(os.path.join(workdir,"volf_of_Classes.hdf"),ivol)
				log_main.add("number of unaccounted particles  %10d"%len(Tracker["this_unaccounted_list"]))
				log_main.add("number of accounted particles  %10d"%len(Tracker["this_accounted_list"]))
				
		Tracker["this_data_list"]    = Tracker["this_unaccounted_list"]   # reset parameters for the next round calculation
		Tracker["total_stack"]       = len(Tracker["this_unaccounted_list"])
		Tracker["this_total_stack"]  = Tracker["total_stack"]
		number_of_groups             = get_number_of_groups(len(Tracker["this_unaccounted_list"]),number_of_images_per_group)
		Tracker["number_of_groups"]  =  number_of_groups
		while number_of_groups >= 2 :
			generation     +=1
			partition_dict ={}
			workdir =os.path.join(masterdir,"generation%03d"%generation)
			Tracker["this_dir"] = workdir
			if myid ==main_node:
				log_main.add("*********************************************")
				log_main.add("-----    generation             %5d    "%generation)
				log_main.add("number of images per group is set as %10d "%number_of_images_per_group)
				log_main.add("the number of groups is  %10d "%number_of_groups)
				log_main.add(" number of particles for clustering is %10d"%Tracker["total_stack"])
				cmd ="{} {}".format("mkdir",workdir)
				os.system(cmd)
			mpi_barrier(MPI_COMM_WORLD)
			create_random_list(Tracker)
			for indep_run in xrange(Tracker["constants"]["indep_runs"]):
				Tracker["this_particle_list"] = Tracker["this_indep_list"][indep_run]
				ref_vol                       = recons_mref(Tracker)
				if myid == main_node:
					log_main.add("independent run  %10d"%indep_run)
					outdir = os.path.join(workdir, "EQ_Kmeans%03d"%indep_run)
				Tracker["this_data_list"]   = Tracker["this_unaccounted_list"]
				#ref_vol=apply_low_pass_filter(ref_vol,Tracker)
				mref_ali3d_EQ_Kmeans(ref_vol,outdir,Tracker["this_unaccounted_text"],Tracker)
				partition_dict[indep_run]   = Tracker["this_partition"]
				Tracker["this_data_list"]   = Tracker["this_unaccounted_list"]
				Tracker["total_stack"]      = len(Tracker["this_unaccounted_list"])
				Tracker["partition_dict"]   = partition_dict
				Tracker["this_total_stack"] = Tracker["total_stack"]
			total_list_of_this_run          = Tracker["this_unaccounted_list"]
			###############################
			do_two_way_comparison(Tracker)
			###############################
			ref_vol_list        = []
			number_of_ref_class = []
			for igrp in xrange(len(Tracker["two_way_stable_member"])):
				Tracker["this_data_list"]      = Tracker["two_way_stable_member"][igrp]
				Tracker["this_data_list_file"] = os.path.join(workdir,"stable_class%d.txt"%igrp)
				if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"])
				mpi_barrier(MPI_COMM_WORLD)
				data,old_shifts  = get_shrink_data_huang(Tracker,Tracker["constants"]["nxinit"],Tracker["this_data_list_file"],Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True)
				volref           = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo= None)
				#volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1)
				if myid == main_node:volref.write_image(os.path.join(workdir,"vol_stable.hdf"),iref)
				#volref = resample(volref,Tracker["shrinkage"])
				ref_vol_list.append(volref)
				number_of_ref_class.append(len(Tracker["this_data_list"]))
				mpi_barrier(MPI_COMM_WORLD)
			Tracker["number_of_ref_class"]      = number_of_ref_class
			Tracker["this_data_list"]           = Tracker["this_accounted_list"]
			outdir                              = os.path.join(workdir,"Kmref")
			empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI(ref_vol_list,outdir,Tracker["this_accounted_text"],Tracker)
			# calculate the 3-D structure of original image size for each group
			number_of_groups                    =  len(res_groups)
			Tracker["this_unaccounted_list"]    = get_complementary_elements(total_list_of_this_run,final_list)
			if myid == main_node:
				log_main.add("the number of particles not processed is %d"%len(Tracker["this_unaccounted_list"]))
				write_text_file(Tracker["this_unaccounted_list"],Tracker["this_unaccounted_text"])
			mpi_barrier(MPI_COMM_WORLD)
			update_full_dict(Tracker["this_unaccounted_list"],Tracker)
			vol_list = []
			for igrp in xrange(number_of_groups):
				data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"], os.path.join(outdir,"Class%d.txt"%igrp), Tracker["constants"]["partstack"], myid, main_node, nproc,preshift = True)
				volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo= None)
				vol_list.append(volref)

			mpi_barrier(MPI_COMM_WORLD)
			nx_of_image=ref_vol_list[0].get_xsize()
			if Tracker["constants"]["PWadjustment"]:
				Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image]
			else:
				Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"]	

			if myid == main_node:
				for ivol in xrange(len(vol_list)):
					refdata    = [None]*4
					refdata[0] = vol_list[ivol]
					refdata[1] = Tracker
					refdata[2] = Tracker["constants"]["myid"]
					refdata[3] = Tracker["constants"]["nproc"] 
					volref     = user_func(refdata)
					volref.write_image(os.path.join(workdir, "volf_of_Classes.hdf"),ivol)
				log_main.add("number of unaccounted particles  %10d"%len(Tracker["this_unaccounted_list"]))
				log_main.add("number of accounted particles  %10d"%len(Tracker["this_accounted_list"]))
			del vol_list
			mpi_barrier(MPI_COMM_WORLD)
			number_of_groups            = get_number_of_groups(len(Tracker["this_unaccounted_list"]),number_of_images_per_group)
			Tracker["number_of_groups"] =  number_of_groups
			Tracker["this_data_list"]   = Tracker["this_unaccounted_list"]
			Tracker["total_stack"]      = len(Tracker["this_unaccounted_list"])
		if Tracker["constants"]["unaccounted"]:
			data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"],Tracker["this_unaccounted_text"],Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True)
			volref          = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo= None)
			nx_of_image     = volref.get_xsize()
			if Tracker["constants"]["PWadjustment"]:
				Tracker["PWadjustment"]=Tracker["PW_dict"][nx_of_image]
			else:
				Tracker["PWadjustment"]=Tracker["constants"]["PWadjustment"]	
			if( myid == main_node ):
				refdata    = [None]*4
				refdata[0] = volref
				refdata[1] = Tracker
				refdata[2] = Tracker["constants"]["myid"]
				refdata[3] = Tracker["constants"]["nproc"]
				volref     = user_func(refdata)
				#volref    = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1)
				volref.write_image(os.path.join(workdir,"volf_unaccounted.hdf"))
		# Finish program
		if myid ==main_node: log_main.add("sxsort3d finishes")
		mpi_barrier(MPI_COMM_WORLD)
		from mpi import mpi_finalize
		mpi_finalize()
		exit()
Ejemplo n.º 7
0
def found_outliers(list_of_projection_indices, outlier_percentile, rviper_iter, masterdir,  bdb_stack_location,
	outlier_index_threshold_method, angle_threshold):
	
	# sxheader.py bdb:nj  --consecutive  --params=OID
	import numpy as np

	mainoutputdir = masterdir + DIR_DELIM + NAME_OF_MAIN_DIR + ("%03d" + DIR_DELIM) %(rviper_iter)

	# if this data analysis step was already performed in the past then return
	for check_run in list_of_projection_indices:
		if not (os.path.exists(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(check_run) + DIR_DELIM + "rotated_reduced_params.txt")):
			break
	else:
		return

	print "identify_outliers"
	projs = []
	for i1 in list_of_projection_indices:
		projs.append(read_text_row(mainoutputdir + NAME_OF_RUN_DIR + "%03d"%(i1) + DIR_DELIM + "params.txt"))

	# ti1, ti3, out = find_common_subset(projs, 1.0)
	subset, avg_diff_per_image, rotated_params = find_common_subset(projs, target_threshold = 0)
	# subset, avg_diff_per_image, rotated_params = find_common_subset(projs, target_threshold = 1.0)
	error_values_and_indices = []
	for i in xrange(len(avg_diff_per_image)):
		error_values_and_indices.append([avg_diff_per_image[i], i])
	del subset, avg_diff_per_image

	error_values_and_indices.sort()

	if outlier_index_threshold_method == "discontinuity_in_derivative":
		outlier_index_threshold = find_index_of_discontinuity_in_derivative([i[0] for i in error_values_and_indices],
		list_of_projection_indices, mainoutputdir, outlier_percentile)
	elif outlier_index_threshold_method == "percentile":
		outlier_index_threshold = outlier_percentile * (len(error_values_and_indices) - 1)/ 100.0
	elif outlier_index_threshold_method == "angle_measure":
		error_values = [i[0] for i in error_values_and_indices]
		outlier_index_threshold = min(range(len(error_values)), key=lambda i: abs(error_values[i]-angle_threshold))
	elif outlier_index_threshold_method == "use all images":
		outlier_index_threshold = len(error_values_and_indices)

	index_keep_images = [i[1] for i in error_values_and_indices[:outlier_index_threshold]]
	index_outliers = [i[1] for i in error_values_and_indices[outlier_index_threshold:]]

	# print "error_values_and_indices: %f"%error_values_and_indices
	print "index_outliers: ", index_outliers

	import copy
	reversed_sorted_index_outliers = copy.deepcopy(index_outliers)
	reversed_sorted_index_outliers.sort(reverse=True)

	for k in xrange(len(projs)):
		for l in reversed_sorted_index_outliers:
			del rotated_params[k][l]

	index_outliers.sort()
	index_keep_images.sort()

	write_text_file(index_outliers, mainoutputdir + "this_iteration_index_outliers.txt")
	write_text_file(index_keep_images, mainoutputdir + "this_iteration_index_keep_images.txt")

	#if len(index_outliers) < 3:
		#return False

	if len(index_outliers) > 0:
		cmd = "{} {} {} {}".format("e2bdb.py ", bdb_stack_location + "_%03d"%(rviper_iter - 1), "--makevstack=" + bdb_stack_location + "_outliers_%03d"%(rviper_iter), "--list=" + mainoutputdir  +  "this_iteration_index_outliers.txt")
		cmdexecute(cmd)
	cmd = "{} {} {} {}".format("e2bdb.py ", bdb_stack_location + "_%03d"%(rviper_iter - 1), "--makevstack=" + bdb_stack_location + "_%03d"%(rviper_iter), "--list=" + mainoutputdir +  "this_iteration_index_keep_images.txt")
	cmdexecute(cmd)
	dat = EMData.read_images(bdb_stack_location + "_%03d"%(rviper_iter - 1))

	write_text_file([dat[i].get_attr("original_image_index")  for i in index_outliers],mainoutputdir + "index_outliers.txt")
	write_text_file([dat[i].get_attr("original_image_index")  for i in index_keep_images],mainoutputdir + "index_keep_images.txt")

	print "index_outliers:: " + str(index_outliers)

	# write rotated param files
	for i1 in range(len(list_of_projection_indices)):
		write_text_row(rotated_params[i1], mainoutputdir + NAME_OF_RUN_DIR + "%03d"%(list_of_projection_indices[i1]) + DIR_DELIM + "rotated_reduced_params.txt")

	return True
Ejemplo n.º 8
0
def kernel(projections,
           stable_subset,
           target_threshold,
           options,
           minimal_subset_size,
           number_of_runs,
           number_of_winners,
           mpi_env,
           log,
           prefix=""):
    from multi_shc import multi_shc, find_common_subset_3
    from utilities import wrap_mpi_bcast, write_text_row, write_text_file, wrap_mpi_gatherv, average_angles
    from itertools import combinations
    import os

    if log == None:
        from logger import Logger
        log = Logger()

    stable_subset = wrap_mpi_bcast(stable_subset, 0, mpi_env.main_comm)

    if mpi_env.main_rank == 0:
        log.add("Start ", number_of_runs, "* 3SHC")
        for i in xrange(number_of_runs):
            log.add("3SHC --> " + log.prefix + prefix + "_" + str(i))

    completed_mshc = 0
    params = []
    while completed_mshc < number_of_runs:
        runs_to_do = min([(number_of_runs - completed_mshc),
                          mpi_env.subcomms_count])
        if mpi_env.subcomm_id < runs_to_do:
            out_dir = prefix + "_" + str(completed_mshc + mpi_env.subcomm_id)
            if mpi_env.sub_rank == 0:
                os.mkdir(log.prefix + out_dir)
            out_params, out_vol, out_peaks = multi_shc(projections,
                                                       stable_subset,
                                                       3,
                                                       options,
                                                       mpi_env.sub_comm,
                                                       log=log.sublog(out_dir +
                                                                      "/"))
        else:
            out_params = None
        if mpi_env.main_rank in mpi_env.subcomms_roots and mpi_env.subcomm_id < runs_to_do:
            params_temp = wrap_mpi_gatherv([out_params], 0, mpi_env.main_comm)
        else:
            params_temp = wrap_mpi_gatherv([], 0, mpi_env.main_comm)
        if mpi_env.main_rank == 0:
            params.extend(params_temp)
        completed_mshc += runs_to_do

    # find common subset
    if mpi_env.main_rank == 0:
        log.add("Calculate common subset")
        best_confs = []
        largest_subset = []
        largest_subset_error = 999.0
        msg = ""
        for it in combinations(range(number_of_runs), number_of_winners):
            confs = list(it)
            input_params = []
            for c in confs:
                input_params.append(params[c])
            subset_thr, subset_size, err_thr, err_size = find_common_subset_3(
                input_params,
                target_threshold,
                minimal_subset_size,
                thresholds=True)
            msg += str(len(subset_size)) + "(" + str(err_size) + ") "
            if len(subset_size) > len(largest_subset) or (
                    len(subset_size) == len(largest_subset)
                    and err_size < largest_subset_error):
                best_confs = confs
                largest_subset = subset_size
                largest_subset_error = err_size
        log.add(msg)
        subset = largest_subset
        threshold = largest_subset_error
        new_stable_subset = []
        for i in subset:
            new_stable_subset.append(stable_subset[i])
        log.add("Best solutions (winners): ", best_confs)
        average_params = []
        for i in subset:
            temp = [params[j][i] for j in best_confs]
            average_params.append(average_angles(temp))
        write_text_file(new_stable_subset,
                        log.prefix + prefix + "_indexes.txt")
        write_text_row(average_params, log.prefix + prefix + "_params.txt")
    else:
        threshold = None
        new_stable_subset = None

    # broadcast threshold and new stable subset and exit
    threshold = wrap_mpi_bcast(threshold, 0, mpi_env.main_comm)
    new_stable_subset = wrap_mpi_bcast(new_stable_subset, 0, mpi_env.main_comm)
    return threshold, new_stable_subset
Ejemplo n.º 9
0
def main():
	import sys
	import os
	import math
	import random
	import pyemtbx.options
	import time
	from   random   import random, seed, randint
	from   optparse import OptionParser

	progname = os.path.basename(sys.argv[0])
	usage = progname + """ [options] <inputfile> <outputfile>

	Generic 2-D image processing programs.

	Functionality:

	1.  Phase flip a stack of images and write output to new file:
		sxprocess.py input_stack.hdf output_stack.hdf --phase_flip
	
	2.  Resample (decimate or interpolate up) images (2D or 3D) in a stack to change the pixel size.
	    The window size will change accordingly.
		sxprocess input.hdf output.hdf  --changesize --ratio=0.5

	3.  Compute average power spectrum of a stack of 2D images with optional padding (option wn) with zeroes or a 3-D volume.
		sxprocess.py input_stack.hdf powerspectrum.hdf --pw [--wn=1024]

	4.  Generate a stack of projections bdb:data and micrographs with prefix mic (i.e., mic0.hdf, mic1.hdf etc) from structure input_structure.hdf, with CTF applied to both projections and micrographs:
		sxprocess.py input_structure.hdf data mic --generate_projections format="bdb":apix=5.2:CTF=True:boxsize=64

    5.  Retrieve original image numbers in the selected ISAC group (here group 12 from generation 3):
    	sxprocess.py  bdb:test3 class_averages_generation_3.hdf  list3_12.txt --isacgroup=12 --params=originalid

    6.  Retrieve original image numbers of images listed in ISAC output stack of averages:
    	sxprocess.py  select1.hdf  ohk.txt

    7.  Adjust rotationally averaged power spectrum of an image to that of a reference image or a reference 1D power spectrum stored in an ASCII file.
    	Optionally use a tangent low-pass filter.  Also works for a stack of images, in which case the output is also a stack.
    	sxprocess.py  vol.hdf ref.hdf  avol.hdf < 0.25 0.2> --adjpw
   	 	sxprocess.py  vol.hdf pw.txt   avol.hdf < 0.25 0.2> --adjpw

    8.  Generate a 1D rotationally averaged power spectrum of an image.
		sxprocess.py  vol.hdf --rotwp=rotpw.txt
    	# Output will contain three columns:
       (1) rotationally averaged power spectrum
       (2) logarithm of the rotationally averaged power spectrum
       (3) integer line number (from zero to approximately to half the image size)

    9.  Apply 3D transformation (rotation and/or shift) to a set of orientation parameters associated with projection data.
    	sxprocess.py  --transfromparams=phi,theta,psi,tx,ty,tz      input.txt  output.txt
    	The output file is then imported and 3D transformed volume computed:
    	sxheader.py  bdb:p  --params=xform.projection  --import=output.txt
    	mpirun -np 2 sxrecons3d_n.py  bdb:p tvol.hdf --MPI
    	The reconstructed volume is in the position of the volume computed using the input.txt parameters and then
    	transformed with rot_shift3D(vol, phi,theta,psi,tx,ty,tz)

   10.  Import ctf parameters from the output of sxcter into windowed particle headers.
	    There are three possible input files formats:  (1) all particles are in one stack, (2 aor 3) particles are in stacks, each stack corresponds to a single micrograph.
	    In each case the particles should contain a name of the micrograph of origin stores using attribute name 'ptcl_source_image'.
        Normally this is done by e2boxer.py during windowing.
	    Particles whose defocus or astigmatism error exceed set thresholds will be skipped, otherwise, virtual stacks with the original way preceded by G will be created.
		sxprocess.py  --input=bdb:data  --importctf=outdir/partres  --defocuserror=10.0  --astigmatismerror=5.0
		#  Output will be a vritual stack bdb:Gdata
		sxprocess.py  --input="bdb:directory/stacks*"  --importctf=outdir/partres  --defocuserror=10.0  --astigmatismerror=5.0
		To concatenate output files:
		cd directory
		e2bdb.py . --makevstack=bdb:allparticles  --filt=G
		IMPORTANT:  Please do not move (or remove!) any input/intermediate EMAN2DB files as the information is linked between them.

   11. Scale 3D shifts.  The shifts in the input five columns text file with 3D orientation parameters will be DIVIDED by the scale factor
		sxprocess.py  orientationparams.txt  scaledparams.txt  scale=0.5
   
   12. Generate 3D mask from a given 3-D volume automatically or using threshold provided by user.
   
   13. Postprocess 3-D or 2-D images: 
   			for 3-D volumes: calculate FSC with provided mask; weight summed volume with FSC; estimate B-factor from FSC weighted summed two volumes; apply negative B-factor to the weighted volume. 
   			for 2-D images:  calculate B-factor and apply negative B-factor to 2-D images.
   14. Winow stack file -reduce size of images without changing the pixel size. 


"""

	parser = OptionParser(usage,version=SPARXVERSION)
	parser.add_option("--order", 				action="store_true", help="Two arguments are required: name of input stack and desired name of output stack. The output stack is the input stack sorted by similarity in terms of cross-correlation coefficent.", default=False)
	parser.add_option("--order_lookup", 		action="store_true", help="Test/Debug.", default=False)
	parser.add_option("--order_metropolis", 	action="store_true", help="Test/Debug.", default=False)
	parser.add_option("--order_pca", 			action="store_true", help="Test/Debug.", default=False)
	parser.add_option("--initial",				type="int", 		default=-1, help="Specifies which image will be used as an initial seed to form the chain. (default = 0, means the first image)")
	parser.add_option("--circular", 			action="store_true", help="Select circular ordering (fisr image has to be similar to the last", default=False)
	parser.add_option("--radius", 				type="int", 		default=-1, help="Radius of a circular mask for similarity based ordering")
	parser.add_option("--changesize", 			action="store_true", help="resample (decimate or interpolate up) images (2D or 3D) in a stack to change the pixel size.", default=False)
	parser.add_option("--ratio", 				type="float", 		default=1.0, help="The ratio of new to old image size (if <1 the pixel size will increase and image size decrease, if>1, the other way round")
	parser.add_option("--pw", 					action="store_true", help="compute average power spectrum of a stack of 2-D images with optional padding (option wn) with zeroes", default=False)
	parser.add_option("--wn", 					type="int", 		default=-1, help="Size of window to use (should be larger/equal than particle box size, default padding to max(nx,ny))")
	parser.add_option("--phase_flip", 			action="store_true", help="Phase flip the input stack", default=False)
	parser.add_option("--makedb", 				metavar="param1=value1:param2=value2", type="string",
					action="append",  help="One argument is required: name of key with which the database will be created. Fill in database with parameters specified as follows: --makedb param1=value1:param2=value2, e.g. 'gauss_width'=1.0:'pixel_input'=5.2:'pixel_output'=5.2:'thr_low'=1.0")
	parser.add_option("--generate_projections", metavar="param1=value1:param2=value2", type="string",
					action="append", help="Three arguments are required: name of input structure from which to generate projections, desired name of output projection stack, and desired prefix for micrographs (e.g. if prefix is 'mic', then micrographs mic0.hdf, mic1.hdf etc will be generated). Optional arguments specifying format, apix, box size and whether to add CTF effects can be entered as follows after --generate_projections: format='bdb':apix=5.2:CTF=True:boxsize=100, or format='hdf', etc., where format is bdb or hdf, apix (pixel size) is a float, CTF is True or False, and boxsize denotes the dimension of the box (assumed to be a square). If an optional parameter is not specified, it will default as follows: format='bdb', apix=2.5, CTF=False, boxsize=64.")
	parser.add_option("--isacgroup", 			type="int", 		help="Retrieve original image numbers in the selected ISAC group. See ISAC documentation for details.", default=-1)
	parser.add_option("--isacselect", 			action="store_true", 		help="Retrieve original image numbers of images listed in ISAC output stack of averages. See ISAC documentation for details.", default=False)
	parser.add_option("--params",	   			type="string",      default=None,    help="Name of header of parameter, which one depends on specific option")
	parser.add_option("--adjpw", 				action="store_true",	help="Adjust rotationally averaged power spectrum of an image", default=False)
	parser.add_option("--rotpw", 				type="string",   	default=None,    help="Name of the text file to contain rotationally averaged power spectrum of the input image.")
	parser.add_option("--transformparams",		type="string",   	default=None,    help="Transform 3D projection orientation parameters using six 3D parameters (phi, theta,psi,sx,sy,sz).  Input: --transformparams=45.,66.,12.,-2,3,-5.5 desired six transformation of the reconstructed structure. Output: file with modified orientation parameters.")

	
	# import ctf estimates done using cter
	parser.add_option("--input",              	type="string",		default= None,     		  help="Input particles.")
	parser.add_option("--importctf",          	type="string",		default= None,     		  help="Name of the file containing CTF parameters produced by sxcter.")
	parser.add_option("--defocuserror",       	type="float",  		default=1000000.0,        help="Exclude micrographs whose relative defocus error as estimated by sxcter is larger than defocuserror percent.  The error is computed as (std dev defocus)/defocus*100%")
	parser.add_option("--astigmatismerror",   	type="float",  		default=360.0,            help="Set to zero astigmatism for micrographs whose astigmatism angular error as estimated by sxcter is larger than astigmatismerror degrees.")

	# import ctf estimates done using cter
	parser.add_option("--scale",              	type="float", 		default=-1.0,      		  help="Divide shifts in the input 3D orientation parameters text file by the scale factor.")
	
	# generate adaptive mask from an given 3-D volume
	parser.add_option("--adaptive_mask",        action="store_true",                      help="create adavptive 3-D mask from a given volume", default=False)
	parser.add_option("--nsigma",              	type="float",	default= 1.,     	      help="number of times of sigma of the input volume to obtain the the large density cluster")
	parser.add_option("--ndilation",            type="int",		default= 3,     		  help="number of times of dilation applied to the largest cluster of density")
	parser.add_option("--kernel_size",          type="int",		default= 11,     		  help="convolution kernel for smoothing the edge of the mask")
	parser.add_option("--gauss_standard_dev",   type="int",		default= 9,     		  help="stanadard deviation value to generate Gaussian edge")
	parser.add_option("--threshold",            type="float",	default= 9999.,           help="threshold provided by user to binarize input volume")
	parser.add_option("--ne",                   type="int",		default= 0,     		  help="number of times to erode the binarized  input image")
	parser.add_option("--nd",                   type="int",		default= 0,     		  help="number of times to dilate the binarized input image")
	parser.add_option("--postprocess",          action="store_true",                      help="postprocess unfiltered odd, even 3-D volumes",default=False)
	parser.add_option("--fsc_weighted",         action="store_true",                      help="postprocess unfiltered odd, even 3-D volumes")
	parser.add_option("--low_pass_filter",      action="store_true",      default=False,  help="postprocess unfiltered odd, even 3-D volumes")
	parser.add_option("--ff",                   type="float", default=.25,                help="low pass filter stop band frequency in absolute unit")
	parser.add_option("--aa",                   type="float", default=.1,                 help="low pass filter falloff" )
	parser.add_option("--mask",           type="string",                                  help="input mask file",  default=None)
	parser.add_option("--output",         type="string",                                  help="output file name", default="postprocessed.hdf")
	parser.add_option("--pixel_size",     type="float",                                   help="pixel size of the data", default=1.0)
	parser.add_option("--B_start",     type="float",                                      help="starting frequency in Angstrom for B-factor estimation", default=10.)
	parser.add_option("--FSC_cutoff",     type="float",                                   help="stop frequency in Angstrom for B-factor estimation", default=0.143)
	parser.add_option("--2d",          action="store_true",                      help="postprocess isac 2-D averaged images",default=False)
	parser.add_option("--window_stack",                     action="store_true",          help="window stack images using a smaller window size", default=False)
	parser.add_option("--box",           type="int",		default= 0,                   help="the new window size ") 
 	(options, args) = parser.parse_args()

	global_def.BATCH = True
		
	if options.phase_flip:
		nargs = len(args)
		if nargs != 2:
			print "must provide name of input and output file!"
			return
		from EMAN2 import Processor
		instack = args[0]
		outstack = args[1]
		nima = EMUtil.get_image_count(instack)
		from filter import filt_ctf
		for i in xrange(nima):
			img = EMData()
			img.read_image(instack, i)
			try:
				ctf = img.get_attr('ctf')
			except:
				print "no ctf information in input stack! Exiting..."
				return
			
			dopad = True
			sign = 1
			binary = 1  # phase flip
				
			assert img.get_ysize() > 1	
			dict = ctf.to_dict()
			dz = dict["defocus"]
			cs = dict["cs"]
			voltage = dict["voltage"]
			pixel_size = dict["apix"]
			b_factor = dict["bfactor"]
			ampcont = dict["ampcont"]
			dza = dict["dfdiff"]
			azz = dict["dfang"]
			
			if dopad and not img.is_complex(): ip = 1
			else:                             ip = 0
	
	
			params = {"filter_type": Processor.fourier_filter_types.CTF_,
	 			"defocus" : dz,
				"Cs": cs,
				"voltage": voltage,
				"Pixel_size": pixel_size,
				"B_factor": b_factor,
				"amp_contrast": ampcont,
				"dopad": ip,
				"binary": binary,
				"sign": sign,
				"dza": dza,
				"azz":azz}
			
			tmp = Processor.EMFourierFilter(img, params)
			tmp.set_attr_dict({"ctf": ctf})
			
			tmp.write_image(outstack, i)

	elif options.changesize:
		nargs = len(args)
		if nargs != 2:
			ERROR("must provide name of input and output file!", "change size", 1)
			return
		from utilities import get_im
		instack = args[0]
		outstack = args[1]
		sub_rate = float(options.ratio)
			
		nima = EMUtil.get_image_count(instack)
		from fundamentals import resample
		for i in xrange(nima):
			resample(get_im(instack, i), sub_rate).write_image(outstack, i)

	elif options.isacgroup>-1:
		nargs = len(args)
		if nargs != 3:
			ERROR("Three files needed on input!", "isacgroup", 1)
			return
		from utilities import get_im
		instack = args[0]
		m=get_im(args[1],int(options.isacgroup)).get_attr("members")
		l = []
		for k in m:
			l.append(int(get_im(args[0],k).get_attr(options.params)))
		from utilities import write_text_file
		write_text_file(l, args[2])

	elif options.isacselect:
		nargs = len(args)
		if nargs != 2:
			ERROR("Two files needed on input!", "isacgroup", 1)
			return
		from utilities import get_im
		nima = EMUtil.get_image_count(args[0])
		m = []
		for k in xrange(nima):
			m += get_im(args[0],k).get_attr("members")
		m.sort()
		from utilities import write_text_file
		write_text_file(m, args[1])

	elif options.pw:
		nargs = len(args)
		if nargs < 2:
			ERROR("must provide name of input and output file!", "pw", 1)
			return
		from utilities import get_im, write_text_file
		from fundamentals import rops_table
		d = get_im(args[0])
		ndim = d.get_ndim()
		if ndim ==3:
			pw = rops_table(d)
			write_text_file(pw, args[1])			
		else:
			nx = d.get_xsize()
			ny = d.get_ysize()
			if nargs ==3: mask = get_im(args[2])
			wn = int(options.wn)
			if wn == -1:
				wn = max(nx, ny)
			else:
				if( (wn<nx) or (wn<ny) ):  ERROR("window size cannot be smaller than the image size","pw",1)
			n = EMUtil.get_image_count(args[0])
			from utilities import model_blank, model_circle, pad
			from EMAN2 import periodogram
			p = model_blank(wn,wn)
		
			for i in xrange(n):
				d = get_im(args[0], i)
				if nargs==3:
					d *=mask
				st = Util.infomask(d, None, True)
				d -= st[0]
				p += periodogram(pad(d, wn, wn, 1, 0.))
			p /= n
			p.write_image(args[1])

	elif options.adjpw:

		if len(args) < 3:
			ERROR("filt_by_rops input target output fl aa (the last two are optional parameters of a low-pass filter)","adjpw",1)
			return
		img_stack = args[0]
		from math         import sqrt
		from fundamentals import rops_table, fft
		from utilities    import read_text_file, get_im
		from filter       import  filt_tanl, filt_table
		if(  args[1][-3:] == 'txt'):
			rops_dst = read_text_file( args[1] )
		else:
			rops_dst = rops_table(get_im( args[1] ))

		out_stack = args[2]
		if(len(args) >4):
			fl = float(args[3])
			aa = float(args[4])
		else:
			fl = -1.0
			aa = 0.0

		nimage = EMUtil.get_image_count( img_stack )

		for i in xrange(nimage):
			img = fft(get_im(img_stack, i) )
			rops_src = rops_table(img)

			assert len(rops_dst) == len(rops_src)

			table = [0.0]*len(rops_dst)
			for j in xrange( len(rops_dst) ):
				table[j] = sqrt( rops_dst[j]/rops_src[j] )

			if( fl > 0.0):
				img = filt_tanl(img, fl, aa)
			img = fft(filt_table(img, table))
			img.write_image(out_stack, i)

	elif options.rotpw != None:

		if len(args) != 1:
			ERROR("Only one input permitted","rotpw",1)
			return
		from utilities import write_text_file, get_im
		from fundamentals import rops_table
		from math import log10
		t = rops_table(get_im(args[0]))
		x = range(len(t))
		r = [0.0]*len(x)
		for i in x:  r[i] = log10(t[i])
		write_text_file([t,r,x],options.rotpw)

	elif options.transformparams != None:
		if len(args) != 2:
			ERROR("Please provide names of input and output files with orientation parameters","transformparams",1)
			return
		from utilities import read_text_row, write_text_row
		transf = [0.0]*6
		spl=options.transformparams.split(',')
		for i in xrange(len(spl)):  transf[i] = float(spl[i])

		write_text_row( rotate_shift_params(read_text_row(args[0]), transf)	, args[1])

	elif options.makedb != None:
		nargs = len(args)
		if nargs != 1:
			print "must provide exactly one argument denoting database key under which the input params will be stored"
			return
		dbkey = args[0]
		print "database key under which params will be stored: ", dbkey
		gbdb = js_open_dict("e2boxercache/gauss_box_DB.json")
				
		parmstr = 'dummy:'+options.makedb[0]
		(processorname, param_dict) = parsemodopt(parmstr)
		dbdict = {}
		for pkey in param_dict:
			if (pkey == 'invert_contrast') or (pkey == 'use_variance'):
				if param_dict[pkey] == 'True':
					dbdict[pkey] = True
				else:
					dbdict[pkey] = False
			else:		
				dbdict[pkey] = param_dict[pkey]
		gbdb[dbkey] = dbdict

	elif options.generate_projections:
		nargs = len(args)
		if nargs != 3:
			ERROR("Must provide name of input structure(s) from which to generate projections, name of output projection stack, and prefix for output micrographs."\
			"sxprocess - generate projections",1)
			return
		inpstr  = args[0]
		outstk  = args[1]
		micpref = args[2]

		parmstr = 'dummy:'+options.generate_projections[0]
		(processorname, param_dict) = parsemodopt(parmstr)

		parm_CTF    = False
		parm_format = 'bdb'
		parm_apix   = 2.5

		if 'CTF' in param_dict:
			if param_dict['CTF'] == 'True':
				parm_CTF = True

		if 'format' in param_dict:
			parm_format = param_dict['format']

		if 'apix' in param_dict:
			parm_apix = float(param_dict['apix'])

		boxsize = 64
		if 'boxsize' in param_dict:
			boxsize = int(param_dict['boxsize'])

		print "pixel size: ", parm_apix, " format: ", parm_format, " add CTF: ", parm_CTF, " box size: ", boxsize

		scale_mult      = 2500
		sigma_add       = 1.5
		sigma_proj      = 30.0
		sigma2_proj     = 17.5
		sigma_gauss     = 0.3
		sigma_mic       = 30.0
		sigma2_mic      = 17.5
		sigma_gauss_mic = 0.3
		
		if 'scale_mult' in param_dict:
			scale_mult = float(param_dict['scale_mult'])
		if 'sigma_add' in param_dict:
			sigma_add = float(param_dict['sigma_add'])
		if 'sigma_proj' in param_dict:
			sigma_proj = float(param_dict['sigma_proj'])
		if 'sigma2_proj' in param_dict:
			sigma2_proj = float(param_dict['sigma2_proj'])
		if 'sigma_gauss' in param_dict:
			sigma_gauss = float(param_dict['sigma_gauss'])	
		if 'sigma_mic' in param_dict:
			sigma_mic = float(param_dict['sigma_mic'])
		if 'sigma2_mic' in param_dict:
			sigma2_mic = float(param_dict['sigma2_mic'])
		if 'sigma_gauss_mic' in param_dict:
			sigma_gauss_mic = float(param_dict['sigma_gauss_mic'])	
			
		from filter import filt_gaussl, filt_ctf
		from utilities import drop_spider_doc, even_angles, model_gauss, delete_bdb, model_blank,pad,model_gauss_noise,set_params2D, set_params_proj
		from projection import prep_vol,prgs
		seed(14567)
		delta = 29
		angles = even_angles(delta, 0.0, 89.9, 0.0, 359.9, "S")
		nangle = len(angles)
		
		modelvol = []
		nvlms = EMUtil.get_image_count(inpstr)
		from utilities import get_im
		for k in xrange(nvlms):  modelvol.append(get_im(inpstr,k))
		
		nx = modelvol[0].get_xsize()
		
		if nx != boxsize:
			ERROR("Requested box dimension does not match dimension of the input model.", \
			"sxprocess - generate projections",1)
		nvol = 10
		volfts = [[] for k in xrange(nvlms)]
		for k in xrange(nvlms):
			for i in xrange(nvol):
				sigma = sigma_add + random()  # 1.5-2.5
				addon = model_gauss(sigma, boxsize, boxsize, boxsize, sigma, sigma, 38, 38, 40 )
				scale = scale_mult * (0.5+random())
				vf, kb = prep_vol(modelvol[k] + scale*addon)
				volfts[k].append(vf)
		del vf, modelvol

		if parm_format == "bdb":
			stack_data = "bdb:"+outstk
			delete_bdb(stack_data)
		else:
			stack_data = outstk + ".hdf"
		Cs      = 2.0
		pixel   = parm_apix
		voltage = 120.0
		ampcont = 10.0
		ibd     = 4096/2-boxsize
		iprj    = 0

		width = 240
		xstart = 8 + boxsize/2
		ystart = 8 + boxsize/2
		rowlen = 17
		from random import randint
		params = []
		for idef in xrange(3, 8):

			irow = 0
			icol = 0

			mic = model_blank(4096, 4096)
			defocus = idef * 0.5#0.2
			if parm_CTF:
				astampl=defocus*0.15
				astangl=50.0
				ctf = generate_ctf([defocus, Cs, voltage,  pixel, ampcont, 0.0, astampl, astangl])

			for i in xrange(nangle):
				for k in xrange(12):
					dphi = 8.0*(random()-0.5)
					dtht = 8.0*(random()-0.5)
					psi  = 360.0*random()

					phi = angles[i][0]+dphi
					tht = angles[i][1]+dtht

					s2x = 4.0*(random()-0.5)
					s2y = 4.0*(random()-0.5)

					params.append([phi, tht, psi, s2x, s2y])

					ivol = iprj % nvol
					#imgsrc = randint(0,nvlms-1)
					imgsrc = iprj % nvlms
					proj = prgs(volfts[imgsrc][ivol], kb, [phi, tht, psi, -s2x, -s2y])

					x = xstart + irow * width
					y = ystart + icol * width

					mic += pad(proj, 4096, 4096, 1, 0.0, x-2048, y-2048, 0)

					proj = proj + model_gauss_noise( sigma_proj, nx, nx )
					if parm_CTF:
						proj = filt_ctf(proj, ctf)
						proj.set_attr_dict({"ctf":ctf, "ctf_applied":0})

					proj = proj + filt_gaussl(model_gauss_noise(sigma2_proj, nx, nx), sigma_gauss)
					proj.set_attr("origimgsrc",imgsrc)
					proj.set_attr("test_id", iprj)
					# flags describing the status of the image (1 = true, 0 = false)
					set_params2D(proj, [0.0, 0.0, 0.0, 0, 1.0])
					set_params_proj(proj, [phi, tht, psi, s2x, s2y])

					proj.write_image(stack_data, iprj)
			
					icol += 1
					if icol == rowlen:
						icol = 0
						irow += 1

					iprj += 1

			mic += model_gauss_noise(sigma_mic,4096,4096)
			if parm_CTF:
				#apply CTF
				mic = filt_ctf(mic, ctf)
			mic += filt_gaussl(model_gauss_noise(sigma2_mic, 4096, 4096), sigma_gauss_mic)
	
			mic.write_image(micpref + "%1d.hdf" % (idef-3), 0)
		
		drop_spider_doc("params.txt", params)

	elif options.importctf != None:
		print ' IMPORTCTF  '
		from utilities import read_text_row,write_text_row
		from random import randint
		import subprocess
		grpfile = 'groupid%04d'%randint(1000,9999)
		ctfpfile = 'ctfpfile%04d'%randint(1000,9999)
		cterr = [options.defocuserror/100.0, options.astigmatismerror]
		ctfs = read_text_row(options.importctf)
		for kk in xrange(len(ctfs)):
			root,name = os.path.split(ctfs[kk][-1])
			ctfs[kk][-1] = name[:-4]
		if(options.input[:4] != 'bdb:'):
			ERROR('Sorry, only bdb files implemented','importctf',1)
		d = options.input[4:]
		#try:     str = d.index('*')
		#except:  str = -1
		from string import split
		import glob
		uu = os.path.split(d)
		uu = os.path.join(uu[0],'EMAN2DB',uu[1]+'.bdb')
		flist = glob.glob(uu)
		for i in xrange(len(flist)):
			root,name = os.path.split(flist[i])
			root = root[:-7]
			name = name[:-4]
			fil = 'bdb:'+os.path.join(root,name)
			sourcemic = EMUtil.get_all_attributes(fil,'ptcl_source_image')
			nn = len(sourcemic)
			gctfp = []
			groupid = []
			for kk in xrange(nn):
				junk,name2 = os.path.split(sourcemic[kk])
				name2 = name2[:-4]
				ctfp = [-1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]
				for ll in xrange(len(ctfs)):
					if(name2 == ctfs[ll][-1]):
						#  found correct
						if(ctfs[ll][8]/ctfs[ll][0] <= cterr[0]):
							#  acceptable defocus error
							ctfp = ctfs[ll][:8]
							if(ctfs[ll][10] > cterr[1] ):
								# error of astigmatism exceed the threshold, set astigmatism to zero.
								ctfp[6] = 0.0
								ctfp[7] = 0.0
							gctfp.append(ctfp)
							groupid.append(kk)
						break
			if(len(groupid) > 0):
				write_text_row(groupid, grpfile)
				write_text_row(gctfp, ctfpfile)
				cmd = "{} {} {} {}".format('e2bdb.py',fil,'--makevstack=bdb:'+root+'G'+name,'--list='+grpfile)
				#print cmd
				subprocess.call(cmd, shell=True)
				cmd = "{} {} {} {}".format('sxheader.py','bdb:'+root+'G'+name,'--params=ctf','--import='+ctfpfile)
				#print cmd
				subprocess.call(cmd, shell=True)
			else:
				print  ' >>>  Group ',name,'  skipped.'
				
		cmd = "{} {} {}".format("rm -f",grpfile,ctfpfile)
		subprocess.call(cmd, shell=True)

	elif options.scale > 0.0:
		from utilities import read_text_row,write_text_row
		scale = options.scale
		nargs = len(args)
		if nargs != 2:
			print "Please provide names of input and output file!"
			return
		p = read_text_row(args[0])
		for i in xrange(len(p)):
			p[i][3] /= scale
			p[i][4] /= scale
		write_text_row(p, args[1])
		
	elif options.adaptive_mask:
		from utilities import get_im
		from morphology import adaptive_mask, binarize, erosion, dilation
		nsigma             = options.nsigma
		ndilation          = options.ndilation
		kernel_size        = options.kernel_size
		gauss_standard_dev = options.gauss_standard_dev
		nargs = len(args)
		if nargs ==0:
			print " Create 3D mask from a given volume, either automatically or from the user provided threshold."
		elif nargs > 2:
			print "Too many inputs are given, try again!"
			return
		else:
			inputvol = get_im(args[0])
			input_path, input_file_name = os.path.split(args[0])
			input_file_name_root,ext=os.path.splitext(input_file_name)
			if nargs == 2:  mask_file_name = args[1]
			else:           mask_file_name = "adaptive_mask_for_"+input_file_name_root+".hdf" # Only hdf file is output.
			if options.threshold !=9999.:
				mask3d = binarize(inputvol, options.threshold)
				for i in xrange(options.ne): mask3d = erosion(mask3d)
				for i in xrange(options.nd): mask3d = dilation(mask3d)
			else: 
				mask3d = adaptive_mask(inputvol, nsigma, ndilation, kernel_size, gauss_standard_dev)
			mask3d.write_image(mask_file_name)
			
	elif options.postprocess:
		from utilities    import get_im
		from fundamentals import rot_avg_table
		from morphology   import compute_bfactor,power
		from statistics   import fsc
		from filter       import filt_table, filt_gaussinv
		from EMAN2 import periodogram
		e1   = get_im(args[0],0)
		if e1.get_zsize()==1:
			nimage = EMUtil.get_image_count(args[0])
			if options.mask !=None: m = get_im(options.mask)
			else: m = None
			for i in xrange(nimage):
				e1 = get_im(args[0],i)
				if m: e1 *=m
				guinerline = rot_avg_table(power(periodogram(e1),.5))
				freq_max   =  1/(2.*pixel_size)
				freq_min   =  1./options.B_start
				b,junk=compute_bfactor(guinerline, freq_min, freq_max, pixel_size)
				tmp = b/pixel_size**2
				sigma_of_inverse=sqrt(2./tmp)
				e1 = filt_gaussinv(e1,sigma_of_inverse)
				if options.low_pass_filter:
					from filter import filt_tanl
					e1 =filt_tanl(e1,options.ff, options.aa)
				e1.write_image(options.output)							
		else:
			nargs = len(args)
			e1    = get_im(args[0])
			if nargs >1: e2 = get_im(args[1])
			if options.mask !=None: m = get_im(options.mask)
			else: m =None
			pixel_size = options.pixel_size
			from math import sqrt
			if m !=None:
				e1 *=m
				if nargs >1 :e2 *=m
			if options.fsc_weighted:
				frc = fsc(e1,e2,1)
				## FSC is done on masked two images
				#### FSC weighting sqrt((2.*fsc)/(1+fsc));
				fil = len(frc[1])*[None]
				for i in xrange(len(fil)):
					if frc[1][i]>=options.FSC_cutoff: tmp = frc[1][i]
					else: tmp = 0.0
					fil[i] = sqrt(2.*tmp/(1.+tmp))
			if nargs>1: e1 +=e2
			if options.fsc_weighted: e1=filt_table(e1,fil) 
			guinerline = rot_avg_table(power(periodogram(e1),.5))
			freq_max   = 1/(2.*pixel_size)
			freq_min   = 1./options.B_start
			b,junk     = compute_bfactor(guinerline, freq_min, freq_max, pixel_size)
			tmp        = b/pixel_size**2
			sigma_of_inverse=sqrt(2./tmp)
			e1  = filt_gaussinv(e1,sigma_of_inverse)
			if options.low_pass_filter:
				from filter       import filt_tanl
				e1 =filt_tanl(e1,options.ff, options.aa)
			e1.write_image(options.output)
		 
	elif options.window_stack:
		nargs = len(args)
		if nargs ==0:
			print "  Reduce image size of a stack"
			return
		else:
			output_stack_name = None
			inputstack = args[0]
			if nargs ==2:output_stack_name = args[1]
			input_path,input_file_name=os.path.split(inputstack)
			input_file_name_root,ext=os.path.splitext(input_file_name)
			if input_file_name_root[0:3]=="bdb":stack_is_bdb= True
			else: stack_is_bdb= False
			if output_stack_name is None:
				if stack_is_bdb: output_stack_name ="bdb:reduced_"+input_file_name_root[4:]
				else:output_stack_name = "reduced_"+input_file_name_root+".hdf" # Only hdf file is output.
			nimage = EMUtil.get_image_count(inputstack)
			from fundamentals import window2d
			for i in xrange(nimage):
				image = EMData()
				image.read_image(inputstack,i)
				w = window2d(image,options.box,options.box)
				w.write_image(output_stack_name,i)
	else:  ERROR("Please provide option name","sxprocess.py",1)	
Ejemplo n.º 10
0
def main():
    import sys
    import os
    import math
    import random
    import pyemtbx.options
    import time
    from random import random, seed, randint
    from optparse import OptionParser

    progname = os.path.basename(sys.argv[0])
    usage = progname + """ [options] <inputfile> <outputfile>

	Generic 2-D image processing programs.

	Functionality:

	1.  Phase flip a stack of images and write output to new file:
		sxprocess.py input_stack.hdf output_stack.hdf --phase_flip
	
	2.  Resample (decimate or interpolate up) images (2D or 3D) in a stack to change the pixel size.
	    The window size will change accordingly.
		sxprocess input.hdf output.hdf  --changesize --ratio=0.5

	3.  Compute average power spectrum of a stack of 2D images with optional padding (option wn) with zeroes.
		sxprocess.py input_stack.hdf powerspectrum.hdf --pw [--wn=1024]

	4.  Generate a stack of projections bdb:data and micrographs with prefix mic (i.e., mic0.hdf, mic1.hdf etc) from structure input_structure.hdf, with CTF applied to both projections and micrographs:
		sxprocess.py input_structure.hdf data mic --generate_projections format="bdb":apix=5.2:CTF=True:boxsize=64

    5.  Retrieve original image numbers in the selected ISAC group (here group 12 from generation 3):
    	sxprocess.py  bdb:test3 class_averages_generation_3.hdf  list3_12.txt --isacgroup=12 --params=originalid

    6.  Retrieve original image numbers of images listed in ISAC output stack of averages:
    	sxprocess.py  select1.hdf  ohk.txt

    7.  Adjust rotationally averaged power spectrum of an image to that of a reference image or a reference 1D power spectrum stored in an ASCII file.
    	Optionally use a tangent low-pass filter.  Also works for a stack of images, in which case the output is also a stack.
    	sxprocess.py  vol.hdf ref.hdf  avol.hdf < 0.25 0.2> --adjpw
   	 	sxprocess.py  vol.hdf pw.txt   avol.hdf < 0.25 0.2> --adjpw

    8.  Generate a 1D rotationally averaged power spectrum of an image.
		sxprocess.py  vol.hdf --rotwp=rotpw.txt
    	# Output will contain three columns:
       (1) rotationally averaged power spectrum
       (2) logarithm of the rotationally averaged power spectrum
       (3) integer line number (from zero to approximately to half the image size)

    9.  Apply 3D transformation (rotation and/or shift) to a set of orientation parameters associated with projection data.
    	sxprocess.py  --transfromparams=phi,theta,psi,tx,ty,tz      input.txt  output.txt
    	The output file is then imported and 3D transformed volume computed:
    	sxheader.py  bdb:p  --params=xform.projection  --import=output.txt
    	mpirun -np 2 sxrecons3d_n.py  bdb:p tvol.hdf --MPI
    	The reconstructed volume is in the position of the volume computed using the input.txt parameters and then
    	transformed with rot_shift3D(vol, phi,theta,psi,tx,ty,tz)

   10.  Import ctf parameters from the output of sxcter into windowed particle headers.
	    There are three possible input files formats:  (1) all particles are in one stack, (2 aor 3) particles are in stacks, each stack corresponds to a single micrograph.
	    In each case the particles should contain a name of the micrograph of origin stores using attribute name 'ptcl_source_image'.
        Normally this is done by e2boxer.py during windowing.
	    Particles whose defocus or astigmatism error exceed set thresholds will be skipped, otherwise, virtual stacks with the original way preceded by G will be created.
		sxprocess.py  --input=bdb:data  --importctf=outdir/partres  --defocuserror=10.0  --astigmatismerror=5.0
		#  Output will be a vritual stack bdb:Gdata
		sxprocess.py  --input="bdb:directory/stacks*"  --importctf=outdir/partres  --defocuserror=10.0  --astigmatismerror=5.0
		To concatenate output files:
		cd directory
		e2bdb.py . --makevstack=bdb:allparticles  --filt=G
		IMPORTANT:  Please do not move (or remove!) any input/intermediate EMAN2DB files as the information is linked between them.

   11. Scale 3D shifts.  The shifts in the input five columns text file with 3D orientation parameters will be DIVIDED by the scale factor
		sxprocess.py  orientationparams.txt  scaledparams.txt  scale=0.5
   
   12. Generate adaptive mask from a given 3-D volume. 


"""

    parser = OptionParser(usage, version=SPARXVERSION)
    parser.add_option(
        "--order",
        action="store_true",
        help=
        "Two arguments are required: name of input stack and desired name of output stack. The output stack is the input stack sorted by similarity in terms of cross-correlation coefficent.",
        default=False)
    parser.add_option("--order_lookup",
                      action="store_true",
                      help="Test/Debug.",
                      default=False)
    parser.add_option("--order_metropolis",
                      action="store_true",
                      help="Test/Debug.",
                      default=False)
    parser.add_option("--order_pca",
                      action="store_true",
                      help="Test/Debug.",
                      default=False)
    parser.add_option(
        "--initial",
        type="int",
        default=-1,
        help=
        "Specifies which image will be used as an initial seed to form the chain. (default = 0, means the first image)"
    )
    parser.add_option(
        "--circular",
        action="store_true",
        help=
        "Select circular ordering (fisr image has to be similar to the last",
        default=False)
    parser.add_option(
        "--radius",
        type="int",
        default=-1,
        help="Radius of a circular mask for similarity based ordering")
    parser.add_option(
        "--changesize",
        action="store_true",
        help=
        "resample (decimate or interpolate up) images (2D or 3D) in a stack to change the pixel size.",
        default=False)
    parser.add_option(
        "--ratio",
        type="float",
        default=1.0,
        help=
        "The ratio of new to old image size (if <1 the pixel size will increase and image size decrease, if>1, the other way round"
    )
    parser.add_option(
        "--pw",
        action="store_true",
        help=
        "compute average power spectrum of a stack of 2-D images with optional padding (option wn) with zeroes",
        default=False)
    parser.add_option(
        "--wn",
        type="int",
        default=-1,
        help=
        "Size of window to use (should be larger/equal than particle box size, default padding to max(nx,ny))"
    )
    parser.add_option("--phase_flip",
                      action="store_true",
                      help="Phase flip the input stack",
                      default=False)
    parser.add_option(
        "--makedb",
        metavar="param1=value1:param2=value2",
        type="string",
        action="append",
        help=
        "One argument is required: name of key with which the database will be created. Fill in database with parameters specified as follows: --makedb param1=value1:param2=value2, e.g. 'gauss_width'=1.0:'pixel_input'=5.2:'pixel_output'=5.2:'thr_low'=1.0"
    )
    parser.add_option(
        "--generate_projections",
        metavar="param1=value1:param2=value2",
        type="string",
        action="append",
        help=
        "Three arguments are required: name of input structure from which to generate projections, desired name of output projection stack, and desired prefix for micrographs (e.g. if prefix is 'mic', then micrographs mic0.hdf, mic1.hdf etc will be generated). Optional arguments specifying format, apix, box size and whether to add CTF effects can be entered as follows after --generate_projections: format='bdb':apix=5.2:CTF=True:boxsize=100, or format='hdf', etc., where format is bdb or hdf, apix (pixel size) is a float, CTF is True or False, and boxsize denotes the dimension of the box (assumed to be a square). If an optional parameter is not specified, it will default as follows: format='bdb', apix=2.5, CTF=False, boxsize=64."
    )
    parser.add_option(
        "--isacgroup",
        type="int",
        help=
        "Retrieve original image numbers in the selected ISAC group. See ISAC documentation for details.",
        default=-1)
    parser.add_option(
        "--isacselect",
        action="store_true",
        help=
        "Retrieve original image numbers of images listed in ISAC output stack of averages. See ISAC documentation for details.",
        default=False)
    parser.add_option(
        "--params",
        type="string",
        default=None,
        help="Name of header of parameter, which one depends on specific option"
    )
    parser.add_option(
        "--adjpw",
        action="store_true",
        help="Adjust rotationally averaged power spectrum of an image",
        default=False)
    parser.add_option(
        "--rotpw",
        type="string",
        default=None,
        help=
        "Name of the text file to contain rotationally averaged power spectrum of the input image."
    )
    parser.add_option(
        "--transformparams",
        type="string",
        default=None,
        help=
        "Transform 3D projection orientation parameters using six 3D parameters (phi, theta,psi,sx,sy,sz).  Input: --transformparams=45.,66.,12.,-2,3,-5.5 desired six transformation of the reconstructed structure. Output: file with modified orientation parameters."
    )

    # import ctf estimates done using cter
    parser.add_option("--input",
                      type="string",
                      default=None,
                      help="Input particles.")
    parser.add_option(
        "--importctf",
        type="string",
        default=None,
        help="Name of the file containing CTF parameters produced by sxcter.")
    parser.add_option(
        "--defocuserror",
        type="float",
        default=1000000.0,
        help=
        "Exclude micrographs whose relative defocus error as estimated by sxcter is larger than defocuserror percent.  The error is computed as (std dev defocus)/defocus*100%"
    )
    parser.add_option(
        "--astigmatismerror",
        type="float",
        default=360.0,
        help=
        "Set to zero astigmatism for micrographs whose astigmatism angular error as estimated by sxcter is larger than astigmatismerror degrees."
    )

    # import ctf estimates done using cter
    parser.add_option(
        "--scale",
        type="float",
        default=-1.0,
        help=
        "Divide shifts in the input 3D orientation parameters text file by the scale factor."
    )

    # generate adaptive mask from an given 3-Db volue
    parser.add_option("--adaptive_mask",
                      action="store_true",
                      help="create adavptive 3-D mask from a given volume",
                      default=False)
    parser.add_option(
        "--nsigma",
        type="float",
        default=1.,
        help=
        "number of times of sigma of the input volume to obtain the the large density cluster"
    )
    parser.add_option(
        "--ndilation",
        type="int",
        default=3,
        help=
        "number of times of dilation applied to the largest cluster of density"
    )
    parser.add_option(
        "--kernel_size",
        type="int",
        default=11,
        help="convolution kernel for smoothing the edge of the mask")
    parser.add_option(
        "--gauss_standard_dev",
        type="int",
        default=9,
        help="stanadard deviation value to generate Gaussian edge")

    (options, args) = parser.parse_args()

    global_def.BATCH = True

    if options.phase_flip:
        nargs = len(args)
        if nargs != 2:
            print "must provide name of input and output file!"
            return
        from EMAN2 import Processor
        instack = args[0]
        outstack = args[1]
        nima = EMUtil.get_image_count(instack)
        from filter import filt_ctf
        for i in xrange(nima):
            img = EMData()
            img.read_image(instack, i)
            try:
                ctf = img.get_attr('ctf')
            except:
                print "no ctf information in input stack! Exiting..."
                return

            dopad = True
            sign = 1
            binary = 1  # phase flip

            assert img.get_ysize() > 1
            dict = ctf.to_dict()
            dz = dict["defocus"]
            cs = dict["cs"]
            voltage = dict["voltage"]
            pixel_size = dict["apix"]
            b_factor = dict["bfactor"]
            ampcont = dict["ampcont"]
            dza = dict["dfdiff"]
            azz = dict["dfang"]

            if dopad and not img.is_complex(): ip = 1
            else: ip = 0

            params = {
                "filter_type": Processor.fourier_filter_types.CTF_,
                "defocus": dz,
                "Cs": cs,
                "voltage": voltage,
                "Pixel_size": pixel_size,
                "B_factor": b_factor,
                "amp_contrast": ampcont,
                "dopad": ip,
                "binary": binary,
                "sign": sign,
                "dza": dza,
                "azz": azz
            }

            tmp = Processor.EMFourierFilter(img, params)
            tmp.set_attr_dict({"ctf": ctf})

            tmp.write_image(outstack, i)

    elif options.changesize:
        nargs = len(args)
        if nargs != 2:
            ERROR("must provide name of input and output file!", "change size",
                  1)
            return
        from utilities import get_im
        instack = args[0]
        outstack = args[1]
        sub_rate = float(options.ratio)

        nima = EMUtil.get_image_count(instack)
        from fundamentals import resample
        for i in xrange(nima):
            resample(get_im(instack, i), sub_rate).write_image(outstack, i)

    elif options.isacgroup > -1:
        nargs = len(args)
        if nargs != 3:
            ERROR("Three files needed on input!", "isacgroup", 1)
            return
        from utilities import get_im
        instack = args[0]
        m = get_im(args[1], int(options.isacgroup)).get_attr("members")
        l = []
        for k in m:
            l.append(int(get_im(args[0], k).get_attr(options.params)))
        from utilities import write_text_file
        write_text_file(l, args[2])

    elif options.isacselect:
        nargs = len(args)
        if nargs != 2:
            ERROR("Two files needed on input!", "isacgroup", 1)
            return
        from utilities import get_im
        nima = EMUtil.get_image_count(args[0])
        m = []
        for k in xrange(nima):
            m += get_im(args[0], k).get_attr("members")
        m.sort()
        from utilities import write_text_file
        write_text_file(m, args[1])

    elif options.pw:
        nargs = len(args)
        if nargs < 2:
            ERROR("must provide name of input and output file!", "pw", 1)
            return
        from utilities import get_im
        d = get_im(args[0])
        nx = d.get_xsize()
        ny = d.get_ysize()
        if nargs == 3: mask = get_im(args[2])
        wn = int(options.wn)
        if wn == -1:
            wn = max(nx, ny)
        else:
            if ((wn < nx) or (wn < ny)):
                ERROR("window size cannot be smaller than the image size",
                      "pw", 1)
        n = EMUtil.get_image_count(args[0])
        from utilities import model_blank, model_circle, pad
        from EMAN2 import periodogram
        p = model_blank(wn, wn)

        for i in xrange(n):
            d = get_im(args[0], i)
            if nargs == 3:
                d *= mask
            st = Util.infomask(d, None, True)
            d -= st[0]
            p += periodogram(pad(d, wn, wn, 1, 0.))
        p /= n
        p.write_image(args[1])

    elif options.adjpw:

        if len(args) < 3:
            ERROR(
                "filt_by_rops input target output fl aa (the last two are optional parameters of a low-pass filter)",
                "adjpw", 1)
            return
        img_stack = args[0]
        from math import sqrt
        from fundamentals import rops_table, fft
        from utilities import read_text_file, get_im
        from filter import filt_tanl, filt_table
        if (args[1][-3:] == 'txt'):
            rops_dst = read_text_file(args[1])
        else:
            rops_dst = rops_table(get_im(args[1]))

        out_stack = args[2]
        if (len(args) > 4):
            fl = float(args[3])
            aa = float(args[4])
        else:
            fl = -1.0
            aa = 0.0

        nimage = EMUtil.get_image_count(img_stack)

        for i in xrange(nimage):
            img = fft(get_im(img_stack, i))
            rops_src = rops_table(img)

            assert len(rops_dst) == len(rops_src)

            table = [0.0] * len(rops_dst)
            for j in xrange(len(rops_dst)):
                table[j] = sqrt(rops_dst[j] / rops_src[j])

            if (fl > 0.0):
                img = filt_tanl(img, fl, aa)
            img = fft(filt_table(img, table))
            img.write_image(out_stack, i)

    elif options.rotpw != None:

        if len(args) != 1:
            ERROR("Only one input permitted", "rotpw", 1)
            return
        from utilities import write_text_file, get_im
        from fundamentals import rops_table
        from math import log10
        t = rops_table(get_im(args[0]))
        x = range(len(t))
        r = [0.0] * len(x)
        for i in x:
            r[i] = log10(t[i])
        write_text_file([t, r, x], options.rotpw)

    elif options.transformparams != None:
        if len(args) != 2:
            ERROR(
                "Please provide names of input and output files with orientation parameters",
                "transformparams", 1)
            return
        from utilities import read_text_row, write_text_row
        transf = [0.0] * 6
        spl = options.transformparams.split(',')
        for i in xrange(len(spl)):
            transf[i] = float(spl[i])

        write_text_row(rotate_shift_params(read_text_row(args[0]), transf),
                       args[1])

    elif options.makedb != None:
        nargs = len(args)
        if nargs != 1:
            print "must provide exactly one argument denoting database key under which the input params will be stored"
            return
        dbkey = args[0]
        print "database key under which params will be stored: ", dbkey
        gbdb = js_open_dict("e2boxercache/gauss_box_DB.json")

        parmstr = 'dummy:' + options.makedb[0]
        (processorname, param_dict) = parsemodopt(parmstr)
        dbdict = {}
        for pkey in param_dict:
            if (pkey == 'invert_contrast') or (pkey == 'use_variance'):
                if param_dict[pkey] == 'True':
                    dbdict[pkey] = True
                else:
                    dbdict[pkey] = False
            else:
                dbdict[pkey] = param_dict[pkey]
        gbdb[dbkey] = dbdict

    elif options.generate_projections:
        nargs = len(args)
        if nargs != 3:
            ERROR("Must provide name of input structure(s) from which to generate projections, name of output projection stack, and prefix for output micrographs."\
            "sxprocess - generate projections",1)
            return
        inpstr = args[0]
        outstk = args[1]
        micpref = args[2]

        parmstr = 'dummy:' + options.generate_projections[0]
        (processorname, param_dict) = parsemodopt(parmstr)

        parm_CTF = False
        parm_format = 'bdb'
        parm_apix = 2.5

        if 'CTF' in param_dict:
            if param_dict['CTF'] == 'True':
                parm_CTF = True

        if 'format' in param_dict:
            parm_format = param_dict['format']

        if 'apix' in param_dict:
            parm_apix = float(param_dict['apix'])

        boxsize = 64
        if 'boxsize' in param_dict:
            boxsize = int(param_dict['boxsize'])

        print "pixel size: ", parm_apix, " format: ", parm_format, " add CTF: ", parm_CTF, " box size: ", boxsize

        scale_mult = 2500
        sigma_add = 1.5
        sigma_proj = 30.0
        sigma2_proj = 17.5
        sigma_gauss = 0.3
        sigma_mic = 30.0
        sigma2_mic = 17.5
        sigma_gauss_mic = 0.3

        if 'scale_mult' in param_dict:
            scale_mult = float(param_dict['scale_mult'])
        if 'sigma_add' in param_dict:
            sigma_add = float(param_dict['sigma_add'])
        if 'sigma_proj' in param_dict:
            sigma_proj = float(param_dict['sigma_proj'])
        if 'sigma2_proj' in param_dict:
            sigma2_proj = float(param_dict['sigma2_proj'])
        if 'sigma_gauss' in param_dict:
            sigma_gauss = float(param_dict['sigma_gauss'])
        if 'sigma_mic' in param_dict:
            sigma_mic = float(param_dict['sigma_mic'])
        if 'sigma2_mic' in param_dict:
            sigma2_mic = float(param_dict['sigma2_mic'])
        if 'sigma_gauss_mic' in param_dict:
            sigma_gauss_mic = float(param_dict['sigma_gauss_mic'])

        from filter import filt_gaussl, filt_ctf
        from utilities import drop_spider_doc, even_angles, model_gauss, delete_bdb, model_blank, pad, model_gauss_noise, set_params2D, set_params_proj
        from projection import prep_vol, prgs
        seed(14567)
        delta = 29
        angles = even_angles(delta, 0.0, 89.9, 0.0, 359.9, "S")
        nangle = len(angles)

        modelvol = []
        nvlms = EMUtil.get_image_count(inpstr)
        from utilities import get_im
        for k in xrange(nvlms):
            modelvol.append(get_im(inpstr, k))

        nx = modelvol[0].get_xsize()

        if nx != boxsize:
            ERROR("Requested box dimension does not match dimension of the input model.", \
            "sxprocess - generate projections",1)
        nvol = 10
        volfts = [[] for k in xrange(nvlms)]
        for k in xrange(nvlms):
            for i in xrange(nvol):
                sigma = sigma_add + random()  # 1.5-2.5
                addon = model_gauss(sigma, boxsize, boxsize, boxsize, sigma,
                                    sigma, 38, 38, 40)
                scale = scale_mult * (0.5 + random())
                vf, kb = prep_vol(modelvol[k] + scale * addon)
                volfts[k].append(vf)
        del vf, modelvol

        if parm_format == "bdb":
            stack_data = "bdb:" + outstk
            delete_bdb(stack_data)
        else:
            stack_data = outstk + ".hdf"
        Cs = 2.0
        pixel = parm_apix
        voltage = 120.0
        ampcont = 10.0
        ibd = 4096 / 2 - boxsize
        iprj = 0

        width = 240
        xstart = 8 + boxsize / 2
        ystart = 8 + boxsize / 2
        rowlen = 17
        from random import randint
        params = []
        for idef in xrange(3, 8):

            irow = 0
            icol = 0

            mic = model_blank(4096, 4096)
            defocus = idef * 0.5  #0.2
            if parm_CTF:
                astampl = defocus * 0.15
                astangl = 50.0
                ctf = generate_ctf([
                    defocus, Cs, voltage, pixel, ampcont, 0.0, astampl, astangl
                ])

            for i in xrange(nangle):
                for k in xrange(12):
                    dphi = 8.0 * (random() - 0.5)
                    dtht = 8.0 * (random() - 0.5)
                    psi = 360.0 * random()

                    phi = angles[i][0] + dphi
                    tht = angles[i][1] + dtht

                    s2x = 4.0 * (random() - 0.5)
                    s2y = 4.0 * (random() - 0.5)

                    params.append([phi, tht, psi, s2x, s2y])

                    ivol = iprj % nvol
                    #imgsrc = randint(0,nvlms-1)
                    imgsrc = iprj % nvlms
                    proj = prgs(volfts[imgsrc][ivol], kb,
                                [phi, tht, psi, -s2x, -s2y])

                    x = xstart + irow * width
                    y = ystart + icol * width

                    mic += pad(proj, 4096, 4096, 1, 0.0, x - 2048, y - 2048, 0)

                    proj = proj + model_gauss_noise(sigma_proj, nx, nx)
                    if parm_CTF:
                        proj = filt_ctf(proj, ctf)
                        proj.set_attr_dict({"ctf": ctf, "ctf_applied": 0})

                    proj = proj + filt_gaussl(
                        model_gauss_noise(sigma2_proj, nx, nx), sigma_gauss)
                    proj.set_attr("origimgsrc", imgsrc)
                    proj.set_attr("test_id", iprj)
                    # flags describing the status of the image (1 = true, 0 = false)
                    set_params2D(proj, [0.0, 0.0, 0.0, 0, 1.0])
                    set_params_proj(proj, [phi, tht, psi, s2x, s2y])

                    proj.write_image(stack_data, iprj)

                    icol += 1
                    if icol == rowlen:
                        icol = 0
                        irow += 1

                    iprj += 1

            mic += model_gauss_noise(sigma_mic, 4096, 4096)
            if parm_CTF:
                #apply CTF
                mic = filt_ctf(mic, ctf)
            mic += filt_gaussl(model_gauss_noise(sigma2_mic, 4096, 4096),
                               sigma_gauss_mic)

            mic.write_image(micpref + "%1d.hdf" % (idef - 3), 0)

        drop_spider_doc("params.txt", params)

    elif options.importctf != None:
        print ' IMPORTCTF  '
        from utilities import read_text_row, write_text_row
        from random import randint
        import subprocess
        grpfile = 'groupid%04d' % randint(1000, 9999)
        ctfpfile = 'ctfpfile%04d' % randint(1000, 9999)
        cterr = [options.defocuserror / 100.0, options.astigmatismerror]
        ctfs = read_text_row(options.importctf)
        for kk in xrange(len(ctfs)):
            root, name = os.path.split(ctfs[kk][-1])
            ctfs[kk][-1] = name[:-4]
        if (options.input[:4] != 'bdb:'):
            ERROR('Sorry, only bdb files implemented', 'importctf', 1)
        d = options.input[4:]
        #try:     str = d.index('*')
        #except:  str = -1
        from string import split
        import glob
        uu = os.path.split(d)
        uu = os.path.join(uu[0], 'EMAN2DB', uu[1] + '.bdb')
        flist = glob.glob(uu)
        for i in xrange(len(flist)):
            root, name = os.path.split(flist[i])
            root = root[:-7]
            name = name[:-4]
            fil = 'bdb:' + os.path.join(root, name)
            sourcemic = EMUtil.get_all_attributes(fil, 'ptcl_source_image')
            nn = len(sourcemic)
            gctfp = []
            groupid = []
            for kk in xrange(nn):
                junk, name2 = os.path.split(sourcemic[kk])
                name2 = name2[:-4]
                ctfp = [-1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
                for ll in xrange(len(ctfs)):
                    if (name2 == ctfs[ll][-1]):
                        #  found correct
                        if (ctfs[ll][8] / ctfs[ll][0] <= cterr[0]):
                            #  acceptable defocus error
                            ctfp = ctfs[ll][:8]
                            if (ctfs[ll][10] > cterr[1]):
                                # error of astigmatism exceed the threshold, set astigmatism to zero.
                                ctfp[6] = 0.0
                                ctfp[7] = 0.0
                            gctfp.append(ctfp)
                            groupid.append(kk)
                        break
            if (len(groupid) > 0):
                write_text_row(groupid, grpfile)
                write_text_row(gctfp, ctfpfile)
                cmd = "{} {} {} {}".format(
                    'e2bdb.py', fil, '--makevstack=bdb:' + root + 'G' + name,
                    '--list=' + grpfile)
                #print cmd
                subprocess.call(cmd, shell=True)
                cmd = "{} {} {} {}".format('sxheader.py',
                                           'bdb:' + root + 'G' + name,
                                           '--params=ctf',
                                           '--import=' + ctfpfile)
                #print cmd
                subprocess.call(cmd, shell=True)
            else:
                print ' >>>  Group ', name, '  skipped.'

        cmd = "{} {} {}".format("rm -f", grpfile, ctfpfile)
        subprocess.call(cmd, shell=True)

    elif options.scale > 0.0:
        from utilities import read_text_row, write_text_row
        scale = options.scale
        nargs = len(args)
        if nargs != 2:
            print "Please provide names of input and output file!"
            return
        p = read_text_row(args[0])
        for i in xrange(len(p)):
            p[i][3] /= scale
            p[i][4] /= scale
        write_text_row(p, args[1])

    elif options.adaptive_mask:
        from utilities import get_im
        from morphology import adaptive_mask
        nsigma = options.nsigma
        ndilation = options.ndilation
        kernel_size = options.kernel_size
        gauss_standard_dev = options.gauss_standard_dev
        nargs = len(args)
        if nargs > 2:
            print "Too many inputs are given, try again!"
            return
        else:
            inputvol = get_im(args[0])
            input_path, input_file_name = os.path.split(args[0])
            input_file_name_root, ext = os.path.splitext(input_file_name)
            if nargs == 2: mask_file_name = args[1]
            else:
                mask_file_name = "adaptive_mask_for" + input_file_name_root + ".hdf"  # Only hdf file is output.
            mask3d = adaptive_mask(inputvol, nsigma, ndilation, kernel_size,
                                   gauss_standard_dev)
            mask3d.write_image(mask_file_name)

    else:
        ERROR("Please provide option name", "sxprocess.py", 1)
Ejemplo n.º 11
0
def main():
    from utilities import get_input_from_string

    progname = os.path.basename(sys.argv[0])
    usage = (
        progname
        + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables"
    )
    parser = OptionParser(usage, version=SPARXVERSION)
    parser.add_option("--radius", type="int", default=-1, help=" particle radius for alignment")
    parser.add_option(
        "--xr",
        type="string",
        default="2 1",
        help="range for translation search in x direction, search is +/xr (default 2,1)",
    )
    parser.add_option(
        "--yr",
        type="string",
        default="-1",
        help="range for translation search in y direction, search is +/yr (default = same as xr)",
    )
    parser.add_option(
        "--ts",
        type="string",
        default="1 0.5",
        help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)",
    )
    parser.add_option("--thld_err", type="float", default=0.75, help="threshld of pixel error (default = 0.75)")
    parser.add_option(
        "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)"
    )
    parser.add_option("--maxit", type="int", default=30, help="number of iterations for each xr (default = 30)")
    parser.add_option(
        "--fl",
        type="float",
        default=0.3,
        help="cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)",
    )
    parser.add_option(
        "--aa", type="float", default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)"
    )
    parser.add_option("--CTF", action="store_true", default=False, help="Use CTF correction during the alignment ")
    parser.add_option(
        "--verbose", action="store_true", default=False, help="print individual pixel error (default = False)"
    )
    parser.add_option(
        "--stables",
        action="store_true",
        default=False,
        help="output the stable particles number in file (default = False)",
    )
    parser.add_option(
        "--method", type="string", default=" ", help="SHC (standard method is default when flag is ommitted)"
    )
    (options, args) = parser.parse_args()
    if len(args) != 1 and len(args) != 2:
        print "usage: " + usage
        print "Please run '" + progname + " -h' for detailed options"
    else:
        if global_def.CACHE_DISABLE:
            from utilities import disable_bdb_cache

            disable_bdb_cache()

        from applications import within_group_refinement, ali2d_ras
        from pixel_error import multi_align_stability
        from utilities import write_text_file, write_text_row

        global_def.BATCH = True

        xrng = get_input_from_string(options.xr)
        if options.yr == "-1":
            yrng = xrng
        else:
            yrng = get_input_from_string(options.yr)
        step = get_input_from_string(options.ts)

        class_data = EMData.read_images(args[0])

        nx = class_data[0].get_xsize()
        ou = options.radius
        num_ali = options.num_ali
        if ou == -1:
            ou = nx / 2 - 2
        from utilities import model_circle, get_params2D, set_params2D

        mask = model_circle(ou, nx, nx)

        if options.CTF:
            from filter import filt_ctf

            for im in xrange(len(class_data)):
                #  Flip phases
                class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1)
        for im in class_data:
            im.set_attr("previousmax", -1.0e10)
            try:
                t = im.get_attr("xform.align2d")  # if they are there, no need to set them!
            except:
                try:
                    t = im.get_attr("xform.projection")
                    d = t.get_params("spider")
                    set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0])
                except:
                    set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0])
        all_ali_params = []

        for ii in xrange(num_ali):
            ali_params = []
            if options.verbose:
                ALPHA = []
                SX = []
                SY = []
                MIRROR = []
            if xrng[0] == 0.0 and yrng[0] == 0.0:
                avet = ali2d_ras(
                    class_data,
                    randomize=True,
                    ir=1,
                    ou=ou,
                    rs=1,
                    step=1.0,
                    dst=90.0,
                    maxit=options.maxit,
                    check_mirror=True,
                    FH=options.fl,
                    FF=options.aa,
                )
            else:
                avet = within_group_refinement(
                    class_data,
                    mask,
                    True,
                    1,
                    ou,
                    1,
                    xrng,
                    yrng,
                    step,
                    90.0,
                    maxit=options.maxit,
                    FH=options.fl,
                    FF=options.aa,
                    method=options.method,
                )
                from utilities import info

                # print "  avet  ",info(avet)
            for im in class_data:
                alpha, sx, sy, mirror, scale = get_params2D(im)
                ali_params.extend([alpha, sx, sy, mirror])
                if options.verbose:
                    ALPHA.append(alpha)
                    SX.append(sx)
                    SY.append(sy)
                    MIRROR.append(mirror)
            all_ali_params.append(ali_params)
            if options.verbose:
                write_text_file([ALPHA, SX, SY, MIRROR], "ali_params_run_%d" % ii)
        """
		avet = class_data[0]
		from utilities import read_text_file
		all_ali_params = []
		for ii in xrange(5):
			temp = read_text_file( "ali_params_run_%d"%ii,-1)
			uuu = []
			for k in xrange(len(temp[0])):
				uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]])
			all_ali_params.append(uuu)


		"""

        stable_set, mir_stab_rate, pix_err = multi_align_stability(
            all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose, 2 * ou + 1
        )
        print "%4s %20s %20s %20s %30s %6.2f" % (
            "",
            "Size of set",
            "Size of stable set",
            "Mirror stab rate",
            "Pixel error prior to pruning the set above threshold of",
            options.thld_err,
        )
        print "Average stat: %10d %20d %20.2f   %15.2f" % (len(class_data), len(stable_set), mir_stab_rate, pix_err)
        if len(stable_set) > 0:
            if options.stables:
                stab_mem = [[0, 0.0, 0] for j in xrange(len(stable_set))]
                for j in xrange(len(stable_set)):
                    stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j]
                write_text_row(stab_mem, "stable_particles.txt")

            stable_set_id = []
            particle_pixerr = []
            for s in stable_set:
                stable_set_id.append(s[1])
                particle_pixerr.append(s[0])
            from fundamentals import rot_shift2D

            avet.to_zero()
            l = -1
            print "average parameters:  angle, x-shift, y-shift, mirror"
            for j in stable_set_id:
                l += 1
                print " %4d  %4d  %12.2f %12.2f %12.2f        %1d" % (
                    l,
                    j,
                    stable_set[l][2][0],
                    stable_set[l][2][1],
                    stable_set[l][2][2],
                    int(stable_set[l][2][3]),
                )
                avet += rot_shift2D(
                    class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3]
                )
            avet /= l + 1
            avet.set_attr("members", stable_set_id)
            avet.set_attr("pix_err", pix_err)
            avet.set_attr("pixerr", particle_pixerr)
            avet.write_image(args[1])

        global_def.BATCH = False
Ejemplo n.º 12
0
def main():
    from EMAN2 import EMData
    from utilities import write_text_file
    from mpi import mpi_init, mpi_finalize, MPI_COMM_WORLD, mpi_comm_rank, mpi_comm_size, mpi_comm_split, mpi_barrier
    from logger import Logger, BaseLogger_Files
    from air import air
    import sys
    import os
    import user_functions
    from optparse import OptionParser
    from global_def import SPARXVERSION

    progname = os.path.basename(sys.argv[0])
    usage = progname + " projections  minimal_subset_size  target_threshold  output_directory --ir=inner_radius --ou=outer_radius --rs=ring_step --xr=x_range --yr=y_range  --ts=translational_search_step  --delta=angular_step --an=angular_neighborhood  --center=center_type --maxit=max_iter --CTF --snr=SNR  --ref_a=S --sym=c1 --function=user_function --MPI"
    parser = OptionParser(usage, version=SPARXVERSION)
    parser.add_option(
        "--ir",
        type="int",
        default=1,
        help="inner radius for rotational correlation > 0 (set to 1)")
    parser.add_option(
        "--ou",
        type="int",
        default=-1,
        help=
        "outer radius for rotational correlation < int(nx/2)-1 (set to the radius of the particle)"
    )
    parser.add_option(
        "--rs",
        type="int",
        default=1,
        help="step between rings in rotational correlation >0  (set to 1)")
    parser.add_option(
        "--xr",
        type="string",
        default="0",
        help="range for translation search in x direction, search is +/xr")
    parser.add_option(
        "--yr",
        type="string",
        default="-1",
        help=
        "range for translation search in y direction, search is +/yr (default = same as xr)"
    )
    parser.add_option(
        "--ts",
        type="string",
        default="1",
        help=
        "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional"
    )
    parser.add_option("--delta",
                      type="string",
                      default="2",
                      help="angular step of reference projections")
    parser.add_option(
        "--an",
        type="string",
        default="-1",
        help="angular neighborhood for local searches (phi and theta)")
    parser.add_option(
        "--center",
        type="float",
        default=-1,
        help=
        "-1: average shift method; 0: no centering; 1: center of gravity (default=-1)"
    )
    parser.add_option(
        "--maxit",
        type="float",
        default=50,
        help=
        "maximum number of iterations performed for each angular step (set to 50) "
    )
    parser.add_option("--CTF",
                      action="store_true",
                      default=False,
                      help="Consider CTF correction during the alignment ")
    parser.add_option("--snr",
                      type="float",
                      default=1.0,
                      help="Signal-to-Noise Ratio of the data")
    parser.add_option(
        "--ref_a",
        type="string",
        default="S",
        help=
        "method for generating the quasi-uniformly distributed projection directions (default S)"
    )
    parser.add_option("--sym",
                      type="string",
                      default="c1",
                      help="symmetry of the refined structure")
    parser.add_option(
        "--function",
        type="string",
        default="ref_ali3d",
        help="name of the reference preparation function (ref_ali3d by default)"
    )
    parser.add_option("--npad",
                      type="int",
                      default=2,
                      help="padding size for 3D reconstruction (default=2)")
    parser.add_option(
        "--MPI",
        action="store_true",
        default=True,
        help="whether to use MPI version - this is always set to True")
    parser.add_option(
        "--proc_mshc",
        type="int",
        default=3,
        help="number of MPI processes per multiSHC, 3 is minimum (default=3)")
    (options, args) = parser.parse_args(sys.argv[1:])

    if len(args) < 4:
        print "usage: " + usage
        print "Please run '" + progname + " -h' for detailed options"
        return 1

    mpi_init(0, [])

    mpi_size = mpi_comm_size(MPI_COMM_WORLD)
    mpi_rank = mpi_comm_rank(MPI_COMM_WORLD)

    proc_per_mshc = int(options.proc_mshc)

    if mpi_size < proc_per_mshc:
        print "Number of processes can't be smaller than value given as the parameter --proc_mshc"
        mpi_finalize()
        return

    log = Logger(BaseLogger_Files())

    projs = EMData.read_images(args[0])
    minimal_subset_size = int(args[1])
    target_threshold = float(args[2])
    outdir = args[3]

    if mpi_rank == 0:
        if os.path.exists(outdir):
            ERROR(
                'Output directory exists, please change the name and restart the program',
                "sxmulti_shc", 1)
            mpi_finalize()
            return
        os.mkdir(outdir)
        import global_def
        global_def.LOGFILE = os.path.join(outdir, global_def.LOGFILE)

    mpi_barrier(MPI_COMM_WORLD)

    if outdir[-1] != "/":
        outdir += "/"
    log.prefix = outdir

    me = wrap_mpi_split(MPI_COMM_WORLD, mpi_size / proc_per_mshc)

    options.user_func = user_functions.factory[options.function]

    new_subset, new_threshold = air(projs,
                                    minimal_subset_size,
                                    target_threshold,
                                    options,
                                    number_of_runs=6,
                                    number_of_winners=3,
                                    mpi_env=me,
                                    log=log)

    if mpi_rank == 0:
        log.add("Output threshold =", new_threshold)
        log.add("Output subset: ", len(new_subset), new_subset)
        write_text_file(new_subset, log.prefix + "final_subset.txt")

    mpi_finalize()