"Dataset not registered. Please create a method to read it")

        db = Dataset(path, dataset, decode=False)

        print("Dumping " + dataset + " data set to file...")
        cPickle.dump(db, open(dataset + '_db.p', 'wb'))
    else:
        print("Loading data from " + dataset + " data set...")
        db = cPickle.load(open(dataset + '_db.p', 'rb'))

    nb_samples = len(db.targets)
    print("Number of samples: " + str(nb_samples))

    if feature_extract:
        f_global = functions.feature_extract(db.data,
                                             nb_samples=nb_samples,
                                             dataset=dataset)
    else:
        print("Loading features from file...")
        f_global = cPickle.load(open(dataset + '_features.p', 'rb'))

    y = np.array(db.targets)
    y = to_categorical(y, num_classes=globalvars.nb_classes)

    if speaker_independence:
        k_folds = len(db.test_sets)
        splits = zip(db.train_sets, db.test_sets)
        print("Using speaker independence %s-fold cross validation" % k_folds)
    else:
        k_folds = 10
        sss = StratifiedShuffleSplit(n_splits=k_folds,
    globalvars.dataset = dataset
    globalvars.nb_classes = nb_classes

    if load_data:
        ds = Dataset(path=path, dataset=dataset)

        print("Writing " + dataset + " data set to file...")
        cPickle.dump(ds, open(dataset + '_db.p', 'wb'))
    else:
        print("Loading data from " + dataset + " data set...")
        ds = cPickle.load(open(dataset + '_db.p', 'rb'))

    if feature_extract:
        functions.feature_extract(ds.data,
                                  nb_samples=len(ds.targets),
                                  dataset=dataset)

    try:
        trials = Trials()
        best_run, best_model = optim.minimize(model=create_model,
                                              data=get_data,
                                              algo=tpe.suggest,
                                              max_evals=6,
                                              trials=trials)

        U_train, X_train, Y_train, U_test, X_test, Y_test = get_data()

        best_model_idx = 1
        best_score = 0.0
        for i in range(1, (globalvars.globalVar + 1)):
    parser.add_option('-c', '--nb_classes', dest='nb_classes', type='int', default=7)

    (options, args) = parser.parse_args(sys.argv)

    wav_path = options.wav_path
    load_data = options.load_data
    feature_extract = options.feature_extract
    model_path = options.model_path
    nb_classes = options.nb_classes

    globalvars.nb_classes = nb_classes

    y, sr = librosa.load(wav_path, sr=16000)
    wav = AudioSegment.from_file(wav_path)
    if feature_extract:
        f = functions.feature_extract((y, sr), nb_samples=1, dataset='prediction')
    else:
        print("Loading features from file...")
        f = cPickle.load(open('prediction_features.p', 'rb'))

    u = np.full((f.shape[0], globalvars.nb_attention_param), globalvars.attention_init_value,
                dtype=np.float64)

    # load model
    model = load_model(model_path)

    # prediction
    results = model.predict([u, f], batch_size=128, verbose=1)

    for result in results:
        print(result)