Ejemplo n.º 1
0
from utility import generate_training_data
from keras.models import Sequential
from keras.layers import Dense
import numpy as np

print("Generating Training Datasets")
training_data_x, training_data_y = generate_training_data()
print("Datasets Generated")
model = Sequential()
model.add(Dense(units=9, input_dim=7))
model.add(Dense(units=15, activation='relu'))
model.add(Dense(output_dim=3, activation='softmax'))

model.compile(loss='mean_squared_error',
              optimizer='adam',
              metrics=['accuracy'])
model.fit((np.array(training_data_x).reshape(-1, 7)),
          (np.array(training_data_y).reshape(-1, 3)),
          batch_size=256,
          epochs=3)

model.save_weights('dnn_model.h5')
model_json = model.to_json()
with open('model.json', 'w') as json_file:
    json_file.write(model_json)
Ejemplo n.º 2
0
file_list = []
file_list = os.listdir(path)
#file_list = ["subset.txt"]


window_size = 1

for f in file_list:

    print("\n K fold Linear Regression with best 6 features on file  : ", f)
    print("\n   window size : ", window_size)

    f = path + f

    training_data = utility.generate_training_data(f, 1, False, 0, 0, True)

    training_data.pop(0)
    #print training_data

    X = utility.get_feature_matrix(training_data, window_size)

    #print "matrix"
    #print X
    # numpy.roll( ) is used for circular shifting of elements
    train_label = X[2:, 0]
    train_features = X[1:- 1, [0,1,2,6,10,11]]

    model = linear_model.LinearRegression()
    #model = neural_network.MLPRegressor([10, 40, 5], 'relu', 'adam', 0.0001, 200, 'constant', 0.001, 0.5, 200,
    #                                    True, None, 0.0001, False, False, 0.9, True, False, 0.1, 0.9, 0.999, 1e-08)
Ejemplo n.º 3
0
test_files = [['sample1_period1', 'sample4_period1', 'sample5_period1', 'sample8_period1'],
              ['sample2_period2', 'sample6_period2', 'sample9_period2'],
              ['sample3_period3', 'sample7_period3', 'sample10_period3']]

for f in file_list:

    print("\nHashtag File ", f)

    f = path + f
    training_data = []

    for i in range(3):

        if i == 0:
            print "Regression on data before Feb 1 8 am"
            training_data = utility.generate_training_data(f, 1, True, 0, epoch_8am, True)
        elif i == 1:
            print "Regression on data between Feb 8 am to 8 pm"
            training_data = utility.generate_training_data(f, 1, True, epoch_8am, epoch_8pm, True)
        else:
            print "Regression on data after Feb 8 pm"
            training_data = utility.generate_training_data(f, 1, True, epoch_8pm, 0, True)

        if len(training_data) != 0:
            training_data.pop(0)

        X = numpy.matrix(training_data)
        rows = X.shape[0]
        avg_error = 0.0
        hashtag_rmse = 0.0
        #generate data for window & perform 10-fold cross-validation and regression
Ejemplo n.º 4
0
#path = "F:/tweets/"

file_list = []
file_list = os.listdir(path)
#file_list = ["subset.txt"]

window_size = 1

for f in file_list:

    print("\n K fold Linear Regression with best 6 features on file  : ", f)
    print("\n   window size : ", window_size)

    f = path + f

    training_data = utility.generate_training_data(f, 1, False, 0, 0, True)

    training_data.pop(0)
    #print training_data

    X = utility.get_feature_matrix(training_data, window_size)

    #print "matrix"
    #print X
    # numpy.roll( ) is used for circular shifting of elements
    train_label = X[2:, 0]
    train_features = X[1:-1, [0, 1, 2, 6, 10, 11]]

    model = linear_model.LinearRegression()
    #model = neural_network.MLPRegressor([10, 40, 5], 'relu', 'adam', 0.0001, 200, 'constant', 0.001, 0.5, 200,
    #                                    True, None, 0.0001, False, False, 0.9, True, False, 0.1, 0.9, 0.999, 1e-08)
Ejemplo n.º 5
0
    'sample1_period1', 'sample4_period1', 'sample5_period1', 'sample8_period1'
], ['sample2_period2', 'sample6_period2', 'sample9_period2'],
              ['sample3_period3', 'sample7_period3', 'sample10_period3']]

for f in file_list:

    print("\nHashtag File ", f)

    f = path + f
    training_data = []

    for i in range(3):

        if i == 0:
            print "Regression on data before Feb 1 8 am"
            training_data = utility.generate_training_data(
                f, 1, True, 0, epoch_8am, True)
        elif i == 1:
            print "Regression on data between Feb 8 am to 8 pm"
            training_data = utility.generate_training_data(
                f, 1, True, epoch_8am, epoch_8pm, True)
        else:
            print "Regression on data after Feb 8 pm"
            training_data = utility.generate_training_data(
                f, 1, True, epoch_8pm, 0, True)

        if len(training_data) != 0:
            training_data.pop(0)

        X = numpy.matrix(training_data)
        rows = X.shape[0]
        avg_error = 0.0