df_negative = negative_numerical.join(negative_cluster_labels)
df_negative = df_negative.join(negative_target)

complete_df = pd.concat([df_positive, df_negative])
complete_df = complete_df.reset_index(drop=True)

# shuffle the data
complete_df = complete_df.sample(frac=1).reset_index(drop=True)

train_x = complete_df[numerical]
train_y = Util.encode(complete_df['Cluster Label'])
true_labels = complete_df['CreditStatus']

# dividing the dataset into training and test sets
x_train, y_train, x_test, y_test, test_true_labels = Util.split_data(
    0.8, train_x, train_y, true_labels)

n_hidden_1 = 8
n_input = train_x.shape[1]
n_classes = train_y.shape[1]

weights = {
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    'out': tf.Variable(tf.random_normal([n_hidden_1, n_classes]))
}

biases = {
    'b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}
Ejemplo n.º 2
0
import numpy as np
import sys
sys.path.append("..")
import utility.Util as Util

credit_data = Util.open_file("../data/credit_data.csv")

# create lists of types of features
numerical = ["Duration", 'InstallmentRatePecnt', 'PresentResidenceTime', 'Age']
target = ['CreditStatus']

credit_data = credit_data.sample(frac=1).reset_index(drop=True)
train_x, train_y = Util.pre_process_data(credit_data, numerical, target)

# dividing the dataset into training and test sets
x_train, y_train, x_test, y_test = Util.split_data(0.8, train_x, train_y)

n_hidden_1 = 8
n_input = train_x.shape[1]
n_classes = train_y.shape[1]

weights = {
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
    'out': tf.Variable(tf.random_normal([n_hidden_1, n_classes]))
}

biases = {
    'b1': tf.Variable(tf.random_normal([n_hidden_1])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}